12,658 research outputs found

    Assessment of density functional methods with correct asymptotic behavior

    Full text link
    Long-range corrected (LC) hybrid functionals and asymptotically corrected (AC) model potentials are two distinct density functional methods with correct asymptotic behavior. They are known to be accurate for properties that are sensitive to the asymptote of the exchange-correlation potential, such as the highest occupied molecular orbital energies and Rydberg excitation energies of molecules. To provide a comprehensive comparison, we investigate the performance of the two schemes and others on a very wide range of applications, including the asymptote problems, self-interaction-error problems, energy-gap problems, charge-transfer problems, and many others. The LC hybrid scheme is shown to consistently outperform the AC model potential scheme. In addition, to be consistent with the molecules collected in the IP131 database [Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai, J. Chem. Phys., 2012, 136, 154109], we expand the EA115 and FG115 databases to include, respectively, the vertical electron affinities and fundamental gaps of the additional 16 molecules, and develop a new database AE113 (113 atomization energies), consisting of accurate reference values for the atomization energies of the 113 molecules in IP131. These databases will be useful for assessing the accuracy of density functional methods.Comment: accepted for publication in Phys. Chem. Chem. Phys., 46 pages, 4 figures, supplementary material include

    On the mixing time and spectral gap for birth and death chains

    Full text link
    For birth and death chains, we derive bounds on the spectral gap and mixing time in terms of birth and death rates. Together with the results of Ding et al. in 2010, this provides a criterion for the existence of a cutoff in terms of the birth and death rates. A variety of illustrative examples are treated
    corecore