1,826 research outputs found
Axillary lymph node dissection combined with radiotherapy for trichilemmal carcinoma with giant lymph node metastasis: A case report
BackgroundTrichilemmal carcinoma (TC) is a rare malignancy with a poor outcome if local recurrence and distant metastasis occur. There is no treatment strategy for such a disease.Case presentationWe reported a complicated case of TC in the right lower abdomen with ipsilateral axillary and inguinal lymph node metastases. After surgery and radiotherapy, there has been no recurrence or metastasis in the follow-up to date.ConclusionWe believe that even though considered a tumor of low malignant potential, TC still has the risk of recurrence and metastasis, and the lymph node status should be identified if a high suspicion or diagnosis is made. Regional lymph node dissection followed by local radiotherapy is recommended as the optimal treatment strategy for patients with lymph node metastases of TC. Screening for metastasis and close follow-up are indispensable for improving prognosis
Soil degradation regulates the effects of litter decomposition on soil microbial nutrient limitation: Evidence from soil enzymatic activity and stoichiometry
Soil microorganisms could obtain energy and nutrients during litter decomposition with the help of soil extracellular enzymes. The litter types were among the most critical factors that affect soil extracellular enzyme activities. However, how litter types modulate the soil extracellular enzyme activity with grassland gradation is unclear. Here, we conducted a 240-day experiment of two different types of litter decomposition on soil extracellular enzyme activity and stoichiometry in different degraded grasslands. We found that C-acquiring enzyme activity and the enzyme stoichiometry of C/N were higher in Chloris virgata litter than in Leymus chinensis litter at lightly degraded level and C-acquiring enzyme activity in C. virgata was 16.96% higher than in L. chinensis. P-acquiring enzyme activity had the same trend with litter types in moderately and highly degraded levels and it was 20.71% and 30.89% higher in C. virgata than that in L. chinensis, respectively. The change of the enzyme stoichiometry with litter types was only showed in the enzyme stoichiometry of C/N at lightly degraded level, suggesting that litter types only affected the microbial C limitation in lightly degraded grassland. Almost all soil extracellular enzyme activities and extracellular enzyme stoichiometry, except the enzyme stoichiometry of N/P, decreased with grassland degraded level increasing. All vector angles were less than 45° suggesting that soil microorganisms were limited by N rather than by P during the decomposition process. Enzyme vector analysis revealed that soil microbial communities were co-limited by C and N during litter decomposition. Moreover, based on Random Forest (explaining more than 80%), we found that soil total nitrogen, total carbon, total phosphorus, dissolved organic C, pH and EC were important factors affecting soil enzyme activities by degradation levels. Our results emphasized that degradation levels could modulate the influences of litter types on soil extracellular enzyme activity. Our study enhanced our understanding in resource requirements for microbial communities to litter resources in degraded grassland and helped us to provide new ideas for improving degraded grassland ecosystems
SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervision and Dynamic Self-Training
Although a polygon is a more accurate representation than an upright bounding
box for text detection, the annotations of polygons are extremely expensive and
challenging. Unlike existing works that employ fully-supervised training with
polygon annotations, we propose a novel text detection system termed SelfText
Beyond Polygon (SBP) with Bounding Box Supervision (BBS) and Dynamic Self
Training (DST), where training a polygon-based text detector with only a
limited set of upright bounding box annotations. For BBS, we firstly utilize
the synthetic data with character-level annotations to train a Skeleton
Attention Segmentation Network (SASN). Then the box-level annotations are
adopted to guide the generation of high-quality polygon-liked pseudo labels,
which can be used to train any detectors. In this way, our method achieves the
same performance as text detectors trained with polygon annotations (i.e., both
are 85.0% F-score for PSENet on ICDAR2015 ). For DST, through dynamically
removing the false alarms, it is able to leverage limited labeled data as well
as massive unlabeled data to further outperform the expensive baseline. We hope
SBP can provide a new perspective for text detection to save huge labeling
costs. Code is available at: github.com/weijiawu/SBP
Polyketides from the Halotolerant Fungus Myrothecium sp. GS-17
Two new polyketides, myrothecol (1) and 5-hydroxy-3-methyl-4-(1- hydroxylethyl)-furan-2(5H)-one (2), were isolated from the fermentation broth of the halotolerant fungus Myrothecium sp. GS-17 along with three known compounds, 5-hydroxyl-3-[(1S)-1-hydroxyethyl]-4-methylfuran-2(5H)-one (3), 3,5-dimethyl-4- hydroxylmethyl-5-methoxyfuran-2(5H)-one (4), and 3,5-dimethyl-4-hydroxymethyl-5- hydroxyfuran-2(5H)-one (5). Compound 1 is the first natural occurring polyketide with a unique furylisobenzofuran skeleton. The structures of these compounds were established via extensive spectroscopic analyses including 1D-, 2D-NMR, HRESI-MS, and crystal X-ray diffraction analysis
In vivo reactive astrocyte imaging using 18FSMBT-1 in tauopathy and familial Alzheimer’s disease mouse models: A multi-tracer study
Background: Reactive astrocytes play an important role in the development of Alzheimer's disease and primary tauopathies. Here, we aimed to investigate the relationships between reactive astrocytes. Microgliosis and glucose metabolism with Tau and amyloid beta pathology by using multi-tracer imaging in widely used tauopathy and familial Alzheimer's disease mouse models.
Results: Positron emission tomography imaging using 18FPM-PBB3 (tau), 18Fflorbetapir (amyloid-beta), 18FSMBT-1 (monoamine oxidase-B), 18FDPA-714 (translocator protein) and 18Ffluorodeoxyglucose was carried out in 3- and 7-month-old rTg4510 tau mice, 5 × FAD familial Alzheimer's disease mice and wild-type mice. Immunofluorescence staining was performed to validate the pathological distribution in the mouse brain after in vivo imaging. We found increased regional levels of 18FPM-PBB3, 18FSMBT-1, and 18FDPA-714 and hypoglucose metabolism in the brains of 7-month-old rTg4510 mice compared to age-matched wild-type mice. Increased 18FSMBT-1 uptake was observed in the brains of 3, 7-month-old 5 × FAD mice, with elevated regional 18Fflorbetapir and 18FDPA-714 uptakes in the brains of 7-month-old 5 × FAD mice, compared to age-matched wild-type mice. Positive correlations were shown between 18FSMBT-1 and 18FPM-PBB3, 18FDPA-714 and 18FPM-PBB3 in rTg4510 mice, and between 18Fflorbetapir and 18FDPA-714 SUVRs in 5 × FAD mice.
Conclusion: In summary, these findings provide in vivo evidence that reactive astrocytes, microglial activation, and cerebral hypoglucose metabolism are associated with tau and amyloid pathology development in animal models of tauopathy and familial Alzheimer's disease
Lysine-5 Acetylation Negatively Regulates Lactate Dehydrogenase A and Is Decreased in Pancreatic Cancer
SummaryTumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types. Here, we show that LDH-A is acetylated at lysine 5 (K5) and that this acetylation inhibits LDH-A activity. Furthermore, the K5-acetylated LDH-A is recognized by the HSC70 chaperone and delivered to lysosomes for degradation. Replacement of endogenous LDH-A with an acetylation mimetic mutant decreases cell proliferation and migration. Importantly, K5 acetylation of LDH-A is reduced in human pancreatic cancers. Our study reveals a mechanism of LDH-A upregulation in pancreatic cancers
In vivo reactive astrocyte imaging using [18F]SMBT-1 in tauopathy and familial Alzheimer's disease mouse models: A multi-tracer study.
BACKGROUND
Reactive astrocytes play an important role in the development of Alzheimer's disease and primary tauopathies. Here, we aimed to investigate the relationships between reactive astrocytes. Microgliosis and glucose metabolism with Tau and amyloid beta pathology by using multi-tracer imaging in widely used tauopathy and familial Alzheimer's disease mouse models.
RESULTS
Positron emission tomography imaging using [18F]PM-PBB3 (tau), [18F]florbetapir (amyloid-beta), [18F]SMBT-1 (monoamine oxidase-B), [18F]DPA-714 (translocator protein) and [18F]fluorodeoxyglucose was carried out in 3- and 7-month-old rTg4510 tau mice, 5 × FAD familial Alzheimer's disease mice and wild-type mice. Immunofluorescence staining was performed to validate the pathological distribution in the mouse brain after in vivo imaging. We found increased regional levels of [18F]PM-PBB3, [18F]SMBT-1, and [18F]DPA-714 and hypoglucose metabolism in the brains of 7-month-old rTg4510 mice compared to age-matched wild-type mice. Increased [18F]SMBT-1 uptake was observed in the brains of 3, 7-month-old 5 × FAD mice, with elevated regional [18F]florbetapir and [18F]DPA-714 uptakes in the brains of 7-month-old 5 × FAD mice, compared to age-matched wild-type mice. Positive correlations were shown between [18F]SMBT-1 and [18F]PM-PBB3, [18F]DPA-714 and [18F]PM-PBB3 in rTg4510 mice, and between [18F]florbetapir and [18F]DPA-714 SUVRs in 5 × FAD mice.
CONCLUSION
In summary, these findings provide in vivo evidence that reactive astrocytes, microglial activation, and cerebral hypoglucose metabolism are associated with tau and amyloid pathology development in animal models of tauopathy and familial Alzheimer's disease
- …