49 research outputs found
Tera-sample-per-second arbitrary waveform generation in the synthetic dimension
The synthetic dimension opens new horizons in quantum physics and topological
photonics by enabling new dimensions for field and particle manipulations. The
most appealing property of the photonic synthetic dimension is its ability to
emulate high-dimensional optical behavior in a unitary physical system. Here we
show that the photonic synthetic dimension can transform technical problems in
photonic systems between dimensionalities, providing unexpected solutions to
technical problems that are otherwise challenging. Specifically, we propose and
experimentally demonstrate a photonic Galton board (PGB) in the temporal
synthetic dimension, in which the temporal high-speed challenge is converted
into a spatial fiber-optic length matching problem, leading to the experimental
generation of tera-sample-per-second arbitrary waveforms. Limited by the speed
of the measurement equipment, waveforms with sampling rates of up to 341.53
GSa/s are recorded. Our proposed PGB operating in the temporal synthetic
dimension breaks the speed limit in a physical system, bringing arbitrary
waveform generation into the terahertz regime. The concept of dimension
conversion offers possible solutions to various physical dimension-related
problems, such as super-resolution imaging, high-resolution spectroscopy, time
measurement, etc
A cross-species alignment tool (CAT)
<p>Abstract</p> <p>Background</p> <p>The main two sorts of automatic gene annotation frameworks are <it>ab initio </it>and alignment-based, the latter splitting into two sub-groups. The first group is used for intra-species alignments, among which are successful ones with high specificity and speed. The other group contains more sensitive methods which are usually applied in aligning inter-species sequences.</p> <p>Results</p> <p>Here we present a new algorithm called <it>CAT </it>(for Cross-species Alignment Tool). It is designed to align mRNA sequences to mammalian-sized genomes. <it>CAT </it>is implemented using C scripts and is freely available on the web at <url>http://xat.sourceforge.net/</url>.</p> <p>Conclusions</p> <p>Examined from different angles, <it>CAT </it>outperforms other extant alignment tools. Tested against all available mouse-human and zebrafish-human orthologs, we demonstrate that <it>CAT </it>combines the specificity and speed of the best intra-species algorithms, like <it>BLAT </it>and <it>sim4</it>, with the sensitivity of the best inter-species tools, like <it>GeneWise</it>.</p
FIST: A Feature-Importance Sampling and Tree-Based Method for Automatic Design Flow Parameter Tuning
Design flow parameters are of utmost importance to chip design quality and
require a painfully long time to evaluate their effects. In reality, flow
parameter tuning is usually performed manually based on designers' experience
in an ad hoc manner. In this work, we introduce a machine learning-based
automatic parameter tuning methodology that aims to find the best design
quality with a limited number of trials. Instead of merely plugging in machine
learning engines, we develop clustering and approximate sampling techniques for
improving tuning efficiency. The feature extraction in this method can reuse
knowledge from prior designs. Furthermore, we leverage a state-of-the-art
XGBoost model and propose a novel dynamic tree technique to overcome
overfitting. Experimental results on benchmark circuits show that our approach
achieves 25% improvement in design quality or 37% reduction in sampling cost
compared to random forest method, which is the kernel of a highly cited
previous work. Our approach is further validated on two industrial designs. By
sampling less than 0.02% of possible parameter sets, it reduces area by 1.83%
and 1.43% compared to the best solutions hand-tuned by experienced designers
Chinese temple networks in Southeast Asia: A WebGIS Digital Humanities Platform for the collaborative study of the Chinese diaspora in Southeast Asia
Ministry of Education, Singapore under its Academic Research Funding Tier
Rational Design of Electrochemiluminescent Devices
ConspectusElectrochemiluminescence (ECL) is a light-emitting process which combines the intriguing merits of both electrochemical and chemiluminescent methods. It is an extensively used method especially in clinical analysis and biological research due to its high sensitivity, wide dynamic range, and good reliability. ECL devices are critical for the development and applications of ECL. Much effort has been expended to improve the sensitivity, portability, affordability, and throughput of new ECL devices, which allow ECL to adapt broad usage scenarios.In this Account, we summarize our efforts on the recent development of ECL devices including new electrodes, ECL devices based on a wireless power transfer (WPT) technique, and novel bipolar electrochemistry. As the essential components in the ECL devices, electrodes play an important role in ECL detection. We have significantly improved the sensitivity of luminol ECL detection of H2O2 by using a stainless steel electrode. By using semiconductor materials (e.g., silicon and BiVO4), we have exploited photoinduced ECL to generate intense emission at much lower potentials upon illumination. For convenience, portability, and disposability, ECL devices based on cheap WPT devices have been designed. A small diode has been employed to rectify alternating current into direct current to dramatically enhance ECL intensity, enabling sensitive ECL detection using a smart phone as a detector. Finally, we have developed several ECL devices based on bipolar electrochemistry in view of the convenience of multiplex ECL sensing using a bipolar electrode (BPE). On the basis of the wireless feature of BPE, we have employed movable BPEs (e.g., BPE swimmers and magnetic rotating BPE) for deep exploration of the motional and ECL properties of dynamic BPE systems. To make full use of the ECL solution, we have dispersed numerous micro-/nano-BPEs in solution to produce intense 3D ECL in the entire solution, instead of 2D ECL in conventional ECL devices. In addition, the interference of ECL noise from driving electrodes was minimized by introducing the stainless steel with a passivation layer as the driving electrode. To eliminate the need for the fabrication of electrode arrays and the interference from the driving electrode and to decrease the applied voltage, we develop a new-type BPE device consisting of a single-electrode electrochemical system (SEES) based on a resistance-induced potential difference. The SEES is fabricated easily by attaching a multiperforated plate to a single film electrode. It enables the simultaneous detection of many samples and analytes using only a single film electrode (e.g., screen-printed electrode) instead of electrode arrays. It is of great potential in clinical analysis especially for multiple-biomarker detection, drug screening, and biological studies. Looking forward, we believe that more ECL devices and related ECL materials and detection methods will be developed for a wide range of applications, such as in vitro diagnosis, point-of-care testing, high-throughput analysis, drug screening, biological study, and mechanism investigation.Conversion lumineuse par Ă©lectrochimiluminescence photoinduit
Frequency tuning behaviour of terahertz quantum cascade lasers revealed by a laser beating scheme
In the terahertz frequency range, the commercialized spectrometers, such as the Fourier transform infrared and time domain spectroscopies, show spectral resolutions between a hundred megahertz and a few gigahertz. Therefore, the high precision frequency tuning ability of terahertz lasers cannot be revealed by these traditional spectroscopic techniques. In this work, we demonstrate a laser beating experiment to investigate the frequency tuning characteristics of terahertz quantum cascade lasers (QCLs) induced by temperature or drive current. Two terahertz QCLs emitting around 4.2 THz with identical active regions and laser dimensions (150 ÎĽm wide and 6 mm long) are employed in the beating experiment. One laser is operated as a frequency comb and the other one is driven at a lower current to emit a single frequency. To measure the beating signal, the single mode laser is used as a fast detector (laser self-detection). The laser beating scheme allows the high precision measurement of the frequency tuning of the single mode terahertz QCL. The experimental results show that in the investigated temperature and current ranges, the frequency tuning coefficients of the terahertz QCL are 6.1 MHz/0.1 K (temperature tuning) and 2.7 MHz/mA (current tuning) that cannot be revealed by a traditional terahertz spectrometer. The laser beating technique shows potential abilities in high precision linewidth measurements of narrow absorption lines and multi-channel terahertz communications
Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth
Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA
Propagation-based Content Dissemination for Social Mobile Interactive Multimedia Services
With the fast development of mobile communication technologies and increased capabilities of smart terminals, the multimedia service has become one of the most attractive applications in mobile Internet. And the combination of social-based mobile multimedia and mobile peer-to-peer (P2P) network has attracted increasing research interests in recent years. However, how to deploy large scale P2P-based social multimedia applications over MANETs has become a bid challenge. In this paper, we propose a Propagation-based Content Dissemination solution for Social Interactive Multimedia services over MANETs (PSIM). In PSIM, the video content propagation problem is formulated as an Epidemic Information Dissemination (SIR) model. Based on the chunk-based dissemination model and analysis, a novel Propagation-based Video Chunk Demands Estimation Algorithm and a Stability-based Cooperative Carrier Selection Mechanism are proposed to estimate the video chunk demands and choose stable cooperative cache nodes, respectively. Simulation results show how PSIM achieves better performance in comparison with another state-of-art solution
Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China
The level of service-industry development has become an important symbol of the competitiveness and influence of cities. The study of the dynamic evolution characteristics and patterns of urban service-industry land use, the driving factors and their interactions is helpful to provide a basis for decision making in policy design and land use planning for the development of service economies. In this study we have conducted an empirical study of China, based on the methods of spatial cold- and hot-spot analysis, Tapio’s decoupling model, and GeoDetector. We found that: (1) the scales of land use, output efficiencies and development intensities of service-industries are increasing with a trend that takes the form of a “J”, “U” and “inverted U”, respectively; (2) Spatial variabilities and agglomerations are significant, with a stable spatial pattern of the scale of service-industry land use, and a gradient in the distribution of cold- and hot-spots. The dominant spatial units of output efficiency and development intensity have changed from low and lower to high and higher, and the cold- and hot-spots gather in clusters; (3) The development of service-industries is highly dependent on the input of land-resources, and only a few provinces are in a state of strong decoupling, while most are in a state of weak decoupling, with quite a few still in a state of expansive coupling, expansive negative decoupling, or even strong negative decoupling; (4) There are many driving factors for land use changes in the service-industry, with increasingly complicated and diversified relationships between each other, ranked in intensity as the scale effect > informatization > globalization > industrialization > urbanization