1,521 research outputs found
A Vision-based Scheme for Kinematic Model Construction of Re-configurable Modular Robots
Re-configurable modular robotic (RMR) systems are advantageous for their
reconfigurability and versatility. A new modular robot can be built for a
specific task by using modules as building blocks. However, constructing a
kinematic model for a newly conceived robot requires significant work. Due to
the finite size of module-types, models of all module-types can be built
individually and stored in a database beforehand. With this priori knowledge,
the model construction process can be automated by detecting the modules and
their corresponding interconnections. Previous literature proposed theoretical
frameworks for constructing kinematic models of modular robots, assuming that
such information was known a priori. While well-devised mechanisms and built-in
sensors can be employed to detect these parameters automatically, they
significantly complicate the module design and thus are expensive. In this
paper, we propose a vision-based method to identify kinematic chains and
automatically construct robot models for modular robots. Each module is affixed
with augmented reality (AR) tags that are encoded with unique IDs. An image of
a modular robot is taken and the detected modules are recognized by querying a
database that maintains all module information. The poses of detected modules
are used to compute: (i) the connection between modules and (ii) joint angles
of joint-modules. Finally, the robot serial-link chain is identified and the
kinematic model constructed and visualized. Our experimental results validate
the effectiveness of our approach. While implementation with only our RMR is
shown, our method can be applied to other RMRs where self-identification is not
possible
Learning Human-Robot Collaboration Insights through the Integration of Muscle Activity in Interaction Motion Models
Recent progress in human-robot collaboration makes fast and fluid
interactions possible, even when human observations are partial and occluded.
Methods like Interaction Probabilistic Movement Primitives (ProMP) model human
trajectories through motion capture systems. However, such representation does
not properly model tasks where similar motions handle different objects. Under
current approaches, a robot would not adapt its pose and dynamics for proper
handling. We integrate the use of Electromyography (EMG) into the Interaction
ProMP framework and utilize muscular signals to augment the human observation
representation. The contribution of our paper is increased task discernment
when trajectories are similar but tools are different and require the robot to
adjust its pose for proper handling. Interaction ProMPs are used with an
augmented vector that integrates muscle activity. Augmented time-normalized
trajectories are used in training to learn correlation parameters and robot
motions are predicted by finding the best weight combination and temporal
scaling for a task. Collaborative single task scenarios with similar motions
but different objects were used and compared. For one experiment only joint
angles were recorded, for the other EMG signals were additionally integrated.
Task recognition was computed for both tasks. Observation state vectors with
augmented EMG signals were able to completely identify differences across
tasks, while the baseline method failed every time. Integrating EMG signals
into collaborative tasks significantly increases the ability of the system to
recognize nuances in the tasks that are otherwise imperceptible, up to 74.6% in
our studies. Furthermore, the integration of EMG signals for collaboration also
opens the door to a wide class of human-robot physical interactions based on
haptic communication that has been largely unexploited in the field.Comment: 7 pages, 2 figures, 2 tables. As submitted to Humanoids 201
Robot Introspection with Bayesian Nonparametric Vector Autoregressive Hidden Markov Models
Robot introspection, as opposed to anomaly detection typical in process
monitoring, helps a robot understand what it is doing at all times. A robot
should be able to identify its actions not only when failure or novelty occurs,
but also as it executes any number of sub-tasks. As robots continue their quest
of functioning in unstructured environments, it is imperative they understand
what is it that they are actually doing to render them more robust. This work
investigates the modeling ability of Bayesian nonparametric techniques on
Markov Switching Process to learn complex dynamics typical in robot contact
tasks. We study whether the Markov switching process, together with Bayesian
priors can outperform the modeling ability of its counterparts: an HMM with
Bayesian priors and without. The work was tested in a snap assembly task
characterized by high elastic forces. The task consists of an insertion subtask
with very complex dynamics. Our approach showed a stronger ability to
generalize and was able to better model the subtask with complex dynamics in a
computationally efficient way. The modeling technique is also used to learn a
growing library of robot skills, one that when integrated with low-level
control allows for robot online decision making.Comment: final version submitted to humanoids 201
Shallow soil moisture - ground thaw interactions and controls
Soil moisture and ground thaw state are both indicative of a hillslope’s ability to transfer water. In cold regions in particular, it is widely known that the wetness of surface soils and depth of ground thaw are important for runoff generation, but the diversity of interactions between surface soil moisture and ground thaw themselves has not been studied. To fill this knowledge gap, detailed shallow soil moisture and thaw depth surveys were conducted along systematic grids at the Baker Creek Basin, Northwest Territories. Multiple hillslopes were studied to determine how the interactions differed along a spectrum of topological, typological and topographic situations (T³ template). Results did not show a simple relationship between soil moisture and ground thaw as was expected. Instead, correlation was a function of wetness such that the correlation between soil moisture and ground thaw improved with site wetness. To understand why differences in soil moisture and ground thaw state arose, water and energy fluxes were examined for these subarctic study sites to discern the key processes controlling the patterns observed. Results showed that the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extents, modified Péclet numbers indicated that the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to the dominance of conductive thermal energy over advective energy for ground thaw. A quantitative explanation for the shallow soil moisture-ground thaw patterns was provided by linking hydrological processes and hillslope storage capacity with the calculated water and energy fluxes as well as the modified Péclet number. These results suggest that the T³ template and the modified Péclet number could be very useful parameters for differentiating landscape components in modeling soil moisture and frost table heterogeneity in cold regions
Fast, Robust, and Versatile Event Detection through HMM Belief State Gradient Measures
Event detection is a critical feature in data-driven systems as it assists
with the identification of nominal and anomalous behavior. Event detection is
increasingly relevant in robotics as robots operate with greater autonomy in
increasingly unstructured environments. In this work, we present an accurate,
robust, fast, and versatile measure for skill and anomaly identification. A
theoretical proof establishes the link between the derivative of the
log-likelihood of the HMM filtered belief state and the latest emission
probabilities. The key insight is the inverse relationship in which gradient
analysis is used for skill and anomaly identification. Our measure showed
better performance across all metrics than related state-of-the art works. The
result is broadly applicable to domains that use HMMs for event detection.Comment: 8 pages, 7 figures, double col, ieee conference forma
Recovering from External Disturbances in Online Manipulation through State-Dependent Revertive Recovery Policies
Robots are increasingly entering uncertain and unstructured environments.
Within these, robots are bound to face unexpected external disturbances like
accidental human or tool collisions. Robots must develop the capacity to
respond to unexpected events. That is not only identifying the sudden anomaly,
but also deciding how to handle it. In this work, we contribute a recovery
policy that allows a robot to recovery from various anomalous scenarios across
different tasks and conditions in a consistent and robust fashion. The system
organizes tasks as a sequence of nodes composed of internal modules such as
motion generation and introspection. When an introspection module flags an
anomaly, the recovery strategy is triggered and reverts the task execution by
selecting a target node as a function of a state dependency chart. The new
skill allows the robot to overcome the effects of the external disturbance and
conclude the task. Our system recovers from accidental human and tool
collisions in a number of tasks. Of particular importance is the fact that we
test the robustness of the recovery system by triggering anomalies at each node
in the task graph showing robust recovery everywhere in the task. We also
trigger multiple and repeated anomalies at each of the nodes of the task
showing that the recovery system can consistently recover anywhere in the
presence of strong and pervasive anomalous conditions. Robust recovery systems
will be key enablers for long-term autonomy in robot systems. Supplemental info
including code, data, graphs, and result analysis can be found at [1].Comment: 8 pages, 8 figures, 1 tabl
- …