1,057 research outputs found

    Scaling properties in the production range of shear dominated flows

    Full text link
    Recent developments in turbulence are focused on the effect of large scale anisotropy on the small scale statistics of velocity increments. According to Kolmogorov, isotropy is recovered in the large Reynolds number limit as the scale is reduced and, in the so-called inertial range, universal features -namely the scaling exponents of structure functions - emerge clearly. However this picture is violated in a number of cases, typically in the high shear region of wall bounded flows. The common opinion ascribes this effect to the contamination of the inertial range by the larger anisotropic scales, i.e. the residual anisotropy is assumed as a weak perturbation of an otherwise isotropic dynamics. In this case, given the rotational invariance of the Navier-Stokes equations, the isotropic component of the structure functions keeps the same exponents of isotropic turbulence. This kind of reasoning fails when the anisotropic effects are strong as in the production range of shear dominated flows. This regime is analyzed here by means of both numerical and experimental data for a homogeneous shear flow. A well defined scaling behavior is found to exist, with exponents which differ substantially from those of classical isotropic turbulence. Contrary to what predicted by the perturbation approach, such a deep alteration concerns the isotropic sector itself. The general validity of these results is discussed in the context of turbulence near solid walls, where more appropriate closure models for the coarse grained Navier-Stokes equations would be advisable.Comment: 4 pages, 4 figure

    Euclidean Supersymmetry, Twisting and Topological Sigma Models

    Full text link
    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N=2, the R-symmetry is SO(2)\times SO(1,1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N=2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.Comment: 8 page

    Generalized structures of N=1 vacua

    Full text link
    We characterize N=1 vacua of type II theories in terms of generalized complex structure on the internal manifold M. The structure group of T(M) + T*(M) being SU(3) x SU(3) implies the existence of two pure spinors Phi_1 and Phi_2. The conditions for preserving N=1 supersymmetry turn out to be simple generalizations of equations that have appeared in the context of N=2 and topological strings. They are (d + H wedge) Phi_1=0 and (d + H wedge) Phi_2 = F_RR. The equation for the first pure spinor implies that the internal space is a twisted generalized Calabi-Yau manifold of a hybrid complex-symplectic type, while the RR-fields serve as an integrability defect for the second.Comment: 21 pages. v2, v3: minor changes and correction

    Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    Full text link
    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.Comment: in Journal of Low Temperature Physics, 05 January 201

    Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests

    Get PDF
    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity scenarios, analysis of the stability of exact solutions and tests of Cosmic Censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D\ge 5, or SO(D-3) for D\ge 6. Performing a dimensional reduction on a (D-4)-sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata and Nakamura (BSSN) formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the LEAN code and perform a variety of simulations of non-spinning black hole space-times. Specifically, we present a modified moving puncture gauge which facilitates long term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5,6.Comment: 31 pages, 6 figures; v2 Minor changes and added two references. Matches the published version in PRD

    Topological twisted sigma model with H-flux revisited

    Full text link
    In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the B-field. We then discuss the topological feature of the model.Comment: 16 pages. Appendix adde

    Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations

    Full text link
    Iron oxides and oxyhydroxides are challenging to model computationally as competing phases may differ in formation energies by only several kJ/mol, they undergo magnetization transitions with temperature, their structures may contain partially occupied sites or long-range ordering of vacancies, and some loose structures require proper description of weak interactions such as hydrogen bonding and dispersive forces. If structures and transformations are to be reliably predicted under different chemical conditions, each of these challenges must be overcome simultaneously, while preserving a high level of numerical accuracy and physical sophistication. Here we present comparative studies of structure, magnetization, and elasticity properties of iron oxides and oxyhydroxides using density functional theory calculations with plane-wave and locally-confined-atomic-orbital basis sets, which are implemented in VASP and SIESTA packages, respectively. We have selected hematite, maghemite, goethite, lepidocrocite, and magnetite as model systems from a total of 13 known iron oxides and oxyhydroxides; and use same convergence criteria and almost equivalent settings in order to make consistent comparisons. Our results show both basis sets can reproduce the energetic stability and magnetic ordering, and are in agreement with experimental observations. There are advantages to choosing one basis set over the other, depending on the intended focus. In our case, we find the method using PW basis set most appropriate, and combine our results to construct the first phase diagram of iron oxides and oxyhydroxides in the space of competing chemical potentials, generated entirely from first principlesComment: 46 pages - Accepted for publication in PRB (19 journal pages), January 201

    Longstanding Endobronchial Foreign Body

    Get PDF
    There are many circumstances in which the diagnosis of endobronchial inhalation of a foreign body (FB) can be missed. Generally, in such cases, within weeks or at most months from the event, clinical bronchopulmonary symptoms develop which allow a correct diagnosis to be made and significant complications to be avoided. We report the case of a patient in whom an endobronchial FB remained undiagnosed, because of lack of symptoms, for almost three years, and then caused signifiicant complications before being identified and removed. Problems related to diagnosis and therapy are discussed

    Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells

    Get PDF
    Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are respon-sible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochon-dria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and dis-ruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cry-opreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes’ competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochon-drial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues
    • …
    corecore