12 research outputs found
Prenatal exome sequencing: background, current practice and future perspectives - A systematic review
The introduction of Next Generation Sequencing (NGS) technologies has exerted a significant impact on prenatal diagnosis. Prenatal Exome Sequencing (pES) is performed with increasing frequency in fetuses with structural anomalies and negative chromosomal analysis. The actual diagnostic value varies extensively, and the role of incidental/secondary or inconclusive findings and negative results has not been fully ascertained. We performed a systematic literature review to evaluate the diagnostic yield, as well as inconclusive and negative-result rates of pES. Papers were divided in two groups. The former includes fetuses presenting structural anomalies, regardless the involved organ; the latter focuses on specific class anomalies. Available findings on non-informative or negative results were gathered as well. In the first group, the weighted average diagnostic yield resulted 19%, and inconclusive finding rate 12%. In the second group, the percentages were extremely variable due to differences in sample sizes and inclusion criteria, which constitute major determinants of pES efficiency. Diagnostic pES availability and its application have a pivotal role in prenatal diagnosis, though more homogeneity in access criteria and a consensus on clinical management of controversial information management is envisageable to reach widespread use in the near future
Heterozygous Pathogenic Nonsense Variant in the ATM Gene in a Family with Unusually High Gastric Cancer Susceptibility
Germline pathogenic variants (PVs) in the Ataxia Telangiectasia mutated (ATM) gene (MIM* 607585) increase the risk for breast, pancreatic, gastric, and prostatic cancer and, to a reduced extent, ovarian and colon cancer and melanoma, with moderate penetrance and variable expressivity. We describe a family presenting early-onset gastric cancer and harboring a heterozygous pathogenic ATM variant. The proband had gastric cancer (age 45) and reported a sister deceased due to diffuse gastric cancer (age 30) and another sister who developed diffuse gastric cancer (age 52) and ovarian serous cancer. Next generation sequencing for cancer susceptibility genes (APC, ATM, BRD1, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, RECQL1, SMAD4, STK11, and TP53) was performed. Molecular analysis identified the truncating c.5944C>T, p.(Gln1982*) variant in the ATM (NM_000051.3; NP_000042.3) in the proband. The variant had segregated in the living affected sister and in the unaffected daughter of the deceased affected sister. Familial early-onset gastric cancer is an unusual presentation for ATM-related malignancies. Individual variants may result in different specific risks. Genotype-phenotype correlations are challenging given the low penetrance and variable expressivity. Careful family history assessments are pivotal for prevention planning and are strengthened by the availability of molecular diagnoses
Case Report: Interindividual variability and possible role of heterozygous variants in a family with deficiency of adenosine deaminase 2: are all heterozygous born equals?
Deficiency of adenosine deaminase 2 (DADA2) is a rare systemic autoinflammatory disease, typically with autosomal recessive inheritance, usually caused by biallelic loss of function mutations in the ADA2 gene. The phenotypic spectrum is broad, generally including fever, early-onset vasculitis, stroke, and hematologic dysfunction. Heterozygous carriers may show related signs and symptoms, usually milder and at an older age. Here we describe the case of two relatives, the proband and his mother, bearing an ADA2 homozygous pathogenic variant, and a heterozygous son. The proband was a 17-year-old boy with intermittent fever, lymphadenopathies, and mild hypogammaglobulinemia. He also had sporadic episodes of aphthosis, livedo reticularis and abdominal pain. Hypogammaglobulinemia was documented when he was 10 years old, and symptoms appeared in his late adolescence. The mother demonstrated mild hypogammaglobulinemia, chronic pericarditis since she was 30 years old and two transient episodes of diplopia without lacunar lesions on MRI. ADA2 (NM_001282225.2) sequencing identified both mother and son as homozygous for the c.1358A>G, p.(Tyr453Cys) variant. ADA2 activity in the proband and the mother was 80-fold lower than in the controls. Clinical features in both patients improved on anti-tumor necrosis factor therapy. An older son was found to be heterozygous for the same mutation post-mortem. He died at the age of 12 years due to a clinical picture of fever, lymphadenitis, skin rash and hypogammaglobulinemia evolving toward fatal multiorgan failure. Biopsies of skin, lymph nodes, and bone marrow excluded lymphomas and vasculitis. Despite being suspected of symptomatic carrier, the contribution of an additional variant in compound heterozygosity, or further genetic could not be ruled out, due to poor quality of DNA samples available. In conclusion, this familiar case demonstrated the wide range of phenotypic variability in DADA2. The search for ADA2 mutations and the assessment of ADA2 activity should be considered also in patients with the association of hypogammaglobulinemia and inflammatory conditions, also with late presentation and in absence of vasculitis. Furthermore, the clinical picture of the deceased carrier suggests a possible contribution of heterozygous pathogenic variants to inflammation
Prenatal Exome Sequencing: Background, Current Practice and Future Perspectives—A Systematic Review
The introduction of Next Generation Sequencing (NGS) technologies has exerted a significant impact on prenatal diagnosis. Prenatal Exome Sequencing (pES) is performed with increasing frequency in fetuses with structural anomalies and negative chromosomal analysis. The actual diagnostic value varies extensively, and the role of incidental/secondary or inconclusive findings and negative results has not been fully ascertained. We performed a systematic literature review to evaluate the diagnostic yield, as well as inconclusive and negative-result rates of pES. Papers were divided in two groups. The former includes fetuses presenting structural anomalies, regardless the involved organ; the latter focuses on specific class anomalies. Available findings on non-informative or negative results were gathered as well. In the first group, the weighted average diagnostic yield resulted 19%, and inconclusive finding rate 12%. In the second group, the percentages were extremely variable due to differences in sample sizes and inclusion criteria, which constitute major determinants of pES efficiency. Diagnostic pES availability and its application have a pivotal role in prenatal diagnosis, though more homogeneity in access criteria and a consensus on clinical management of controversial information management is envisageable to reach widespread use in the near future
Genotype-Phenotype Correlations in Monogenic Parkinson Disease. A Review on Clinical and Molecular Findings
Parkinson disease (PD) is a complex neurodegenerative disorder, usually with multifactorial etiology. It is characterized by prominent movement disorders and non-motor symptoms. Movement disorders commonly include bradykinesia, rigidity, and resting tremor. Non-motor symptoms can include behavior disorders, sleep disturbances, hyposmia, cognitive impairment, and depression. A fraction of PD cases instead is due to Parkinsonian conditions with Mendelian inheritance. The study of the genetic causes of these phenotypes has shed light onto common pathogenetic mechanisms underlying Parkinsonian conditions. Monogenic Parkinsonisms can present autosomal dominant, autosomal recessive, or even X-linked inheritance patterns. Clinical presentations vary from forms indistinguishable from idiopathic PD to severe childhood-onset conditions with other neurological signs. We provided a comprehensive description of each condition, discussing current knowledge on genotype-phenotype correlations. Despite the broad clinical spectrum and the many genes involved, the phenotype appears to be related to the disrupted cell function and inheritance pattern, and several assumptions about genotype-phenotype correlations can be made. The interest in these assumptions is not merely speculative, in the light of novel promising targeted therapies currently under development
Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis
Fetal malformations occur in 2–3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. “Structural anomalies” include non-transient anatomic alterations. “Soft markers” are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as “dynamic”. This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA
A Pain in the Neck: Lessons Learnt from Genetic Testing in Fetuses Detected with Nuchal Fluid Collections, Increased Nuchal Translucency versus Cystic Hygroma—Systematic Review of the Literature, Meta-Analysis and Case Series
Fetal Nuchal fluid collections can manifest with two distinct presentations attributable to the same phenotypic spectrum: increased nuchal translucency (iNT) and cystic hygroma. The prenatal detection of these findings should prompt an accurate assessment through genetic counseling and testing, including karyotype, chromosomal microarray analysis (CMA) and multigene RASopathy panel. We performed a systematic review of the literature and meta-analysis, to calculate diagnostic yields of genetic testing in fetuses with iNT and cystic hygroma. We compared the results with a cohort of 96 fetuses with these isolated findings. Fetuses with isolated NT ≥ 2.5 mm showed karyotype anomalies in 22.76% of cases and CMA presented an incremental detection rate of 2.35%. Fetuses with isolated NT ≥ 3 mm presented aneuploidies in 14.36% of cases and CMA had an incremental detection rate of 3.89%. When the isolated NT measured at least 3.5 mm the diagnostic yield of karyotyping was 34.35%, the incremental CMA detection rate was 4.1%, the incremental diagnostic rate of the RASopathy panel was 1.44% and it was 2.44% for exome sequencing. Interestingly, CMA presents a considerable diagnostic yield in the group of fetuses with NT ≥ 3.5 mm. Similarly, exome sequencing appears to show promising results and could be considered after a negative CMA result
A Pain in the Neck: Lessons Learnt from Genetic Testing in Fetuses Detected with Nuchal Fluid Collections, Increased Nuchal Translucency versus Cystic Hygroma—Systematic Review of the Literature, Meta-Analysis and Case Series
Fetal Nuchal fluid collections can manifest with two distinct presentations attributable to the same phenotypic spectrum: increased nuchal translucency (iNT) and cystic hygroma. The prenatal detection of these findings should prompt an accurate assessment through genetic counseling and testing, including karyotype, chromosomal microarray analysis (CMA) and multigene RASopathy panel. We performed a systematic review of the literature and meta-analysis, to calculate diagnostic yields of genetic testing in fetuses with iNT and cystic hygroma. We compared the results with a cohort of 96 fetuses with these isolated findings. Fetuses with isolated NT ≥ 2.5 mm showed karyotype anomalies in 22.76% of cases and CMA presented an incremental detection rate of 2.35%. Fetuses with isolated NT ≥ 3 mm presented aneuploidies in 14.36% of cases and CMA had an incremental detection rate of 3.89%. When the isolated NT measured at least 3.5 mm the diagnostic yield of karyotyping was 34.35%, the incremental CMA detection rate was 4.1%, the incremental diagnostic rate of the RASopathy panel was 1.44% and it was 2.44% for exome sequencing. Interestingly, CMA presents a considerable diagnostic yield in the group of fetuses with NT ≥ 3.5 mm. Similarly, exome sequencing appears to show promising results and could be considered after a negative CMA result
Genomic Breakpoints’ Characterization of a Large CHEK2 Duplication in an Italian Family with Hereditary Breast Cancer
CHEK2 (checkpoint kinase 2; MIM# 604373) is a tumor suppressor gene that encodes a serine threonine kinase involved in pathways such as DNA repair, cell cycle arrest, mitosis, and apoptosis. Pathogenic variants in CHEK2 contribute to a moderately increased risk of breast and other cancers. Several variant classes have been reported, either point mutations or large intragenic rearrangements. However, a significant portion of reported variants has an uncertain clinical significance. We report an intragenic CHEK2 duplication, ranging from intron 5 to intron 13, identified in an Italian family with hereditary breast cancer. Using long range PCR, with duplication-specific primers, we were able to ascertain the genomic breakpoint. We also performed a real-time PCR to assess a possible loss-of-function effect. The genomic characterization of large intragenic rearrangements in cancer susceptibility genes is important for the clinical management of the carriers and for a better classification of rare variants. The molecular definition of breakpoints allows for the prediction of the impact of the variant on transcripts and proteins, aiding in its characterization and clinical classification
Fetal early motor neuron disruption and prenatal molecular diagnosis in a severe BICD2-opathy
BICD2 (BICD Cargo Adaptor 2, MIM*609797) mutations are associated with severe prenatal-onset forms of spinal muscular atrophy, lower extremity-predominant 2B (SMALED2B MIM 618291) or milder forms with childhood-onset (SMALED2A MIM 615290). Etiopathogenesis is not fully clarified and a wide spectrum of phenotypic presentations is reported, ranging from extreme prenatal forms with adverse outcome, to slow progressive late-onset forms. We report a fetus at 22 gestational weeks with evidence of Arthrogryposis Multiplex Congenita on ultrasound, presenting with fixed extended lower limbs and flexed upper limbs, bilateral clubfoot and absent fetal movements. A trio-based prenatal Exome Sequencing was performed, disclosing a de novo heterozygous pathogenic in frame deletion (NM_015250.3: c.1636_1638delAAT; p.Asn546del) in BICD2. After pregnancy termination, quantitative analysis on NeuN immunostained spinal cord sections of the ventral horns, revealed that neuronal density was markedly reduced compared to the one of an age-matched normal fetus and an age-matched type-I Spinal Muscular Atrophy sample, used as a comparative model. The present case, the first prenatally diagnosed and neuropathologically characterized, showed an early motor neuron loss in SMALED2B, providing further insight into the pathological basis of BICD2-opathies