13 research outputs found
Metabolic grey early warning model for dam deformation based on wavelet denoising
Influenced by environment and human factors, the observed data of dam deformation consist of real deformation value and observation error (noise). The conventional GM(1,1) model based on nondenoised observation data is not very effective. In order to improve the prediction effect of conventional GM(1,1) model, wavelet threshold denoising method is used to eliminate the noise in the original data and improve the smoothness of the data sequence. Then, based on the conventional GM(1,1) model, the metabolic GM(1,1) model is established by eliminating the oldest information and adding the newest information. The application results show that the wavelet threshold denoising can obviously remove the noise from the original data. The predicted vertical displacement of the metabolic GM(1,1) model based on the denoised data has little difference with the measured value, and the predicted precision is obviously higher than that of the conventional GM (1,1) model. Therefore, the metabolic GM(1,1) model based on wavelet denoising can be used for prediction and early warning of dam deformation
Fractal Characteristics of the Seepage Erosion Process in Porous Soil
Seepage-induced erosion in porous soil has always been a major concern in the field of geofluids. Various fractal models have been built to theoretically investigate the porosity and permeability coefficient. However, the seepage erosion process (i.e., incubation, formation, evolution, and destruction) in porous soil is not clearly demonstrated to clarify the seepage fractal characteristics. In this paper, a series of hydraulic tests were performed to reveal the mass fractal characteristics of sandy gravels, coarse-grained sands, and fine-grained sands in the seepage erosion process. The results show that the mass fractal dimension was appropriate to describe the cumulative mass distribution of particles, the complexity of pore networks, and the dynamic changes of the seepage erosion process. Moreover, the scale-invariant interval, as an essential precondition for the accurate calculation of the mass fractal dimension, was to some extent affected by the average grain size and the fine content of porous soil. In particular, the changing trend of porosity and permeability coefficient with the mass fractal dimension was demonstrated in the seepage erosion process. Both porosity and permeability coefficients indicated an increasing trend as the development of seepage erosion. However, the mass fractal dimension gradually decreased due to the removal of fine particles induced by seepage flow water. Research findings will not only provide a new perspective on the seepage erosion mechanism but also predict the development of the seepage erosion process in engineering practice
Prediction Model of Residual Soil Shear Strength under Dry–Wet Cycles and Its Uncertainty
Granite residual soil is widely distributed in Southeast Fujian. Large-scale engineering construction leads to the exposure of residual soil slopes to the natural environment. Affected by seasonal climate factors, the soil of slopes experiences a dry–wet cycle for a long time. The repeated changes in water content seriously affect the shear strength of soil, and then affect the stability of the slope. In order to explore the influence of the dry–wet cycle on the shear strength of granite residual soil in Fujian, an indoor dry–wet cycle simulation test was carried out for shallow granite residual soil on a slope in Fuzhou, and the relationship between water content, dry–wet cycle times, and the shear strength index, including the cohesion and internal friction angle of the granite residual soil, was discussed. The results show that when the number of dry–wet cycles is constant, the cohesion and internal friction angle of the granite residual soil decrease with an increase in water content. The relationship between the cohesion, internal friction angle, and water content can be described using a power function. Meanwhile, the fitting parameters of the power function are also a function of the number of wet and dry cycles. The prediction formulas of the cohesion and internal friction angle considering the number of dry–wet cycles and water content are established, and then the prediction formula of shear strength is obtained. The ratio of the predicted value of shear strength to the test value shall be within ±15%. An error transfer analysis based on the point estimation method shows that the overall uncertainty of the predicted value of shear strength caused by the combined uncertainty of the predicted value of cohesion and the internal friction angle and the single-variable uncertainty of the predicted value of shear strength caused only by the uncertainty of the predicted value of either the cohesion or internal friction angle increases first and then decreases with an increase in the number of dry–wet cycles. All increase with an increasing water content. The maximum standard deviation of the proposed shear strength prediction model of granite residual soil is less than 9%
Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight
BACKGROUND: Rice is one of the most important staple food crops in Asia. Since the first green revolution beginning in 1960s, high-yield semidwarf modern rice varieties have been widely planted; however, traditional rice varieties with tall plant type are still grown in many countries due to their good grain quality and adaptation to local climate and environment. Siputeh, a local rice variety mainly planted in Java and Sumatra islands of Indonesia, produces long grain rice with good cooking and eating quality. However, the variety has low yield with tall plant type and long growth duration and is highly susceptible to biotic and abiotic stress. RESULTS: Siputeh as the recurrent female was crossed with the donor line WH421, an elite paternal line of hybrid rice containing the sd1, Wx(b), Xa4 and Xa21 genes, followed by backcrossing and self-pollination. TS4, a BC3F4 line derived from the breeding program, was obtained through marker-assisted selection for the sd1, Wx(b), Xa4 and Xa21 loci. TS4 has semi-dwarf phenotype and short growth duration. TS4 conferred disease resistance to multiple Xanthomonas oryzae pv. oryzae (Xoo) strains collected from different countries around the world. TS4 achieved higher grain yield than Siputeh in two field trials conducted in Banda Aceh, Indonesia and Lingshui, China, respectively. Finally, TS4 has better grain quality than Siputeh in terms of degree of chalkiness and amylose content. CONCLUSION: An improved rice line, designed as TS4, has been developed to contain semi-dwarf gene sd1, low amylase content gene Wx(b) and bacterial light resistance genes Xa4 and Xa21 through marker-assisted selection. TS4 has semi-dwarf phenotype with reduced growth duration, produces high yield with good grain quality and provides broad-spectrum resistance to Xoo strains. The development of TS4 enriches the diversity of local rice varieties with high yield potential and good grain quality. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12284-014-0033-2) contains supplementary material, which is available to authorized users