35,444 research outputs found
Inner product computation for sparse iterative solvers on\ud distributed supercomputer
Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale
The effect of internal pipe wall roughness on the accuracy of clamp-on ultrasonic flow meters
Clamp-on transit-time ultrasonic flowmeters (UFMs) suffer from poor accuracy compared with spool-piece UFMs due to uncertainties that result from the in-field installation process. One of the important sources of uncertainties is internal pipe wall roughness which affects the flow profile and also causes significant scattering of ultrasound. This paper purely focuses on the parametric study to quantify the uncertainties (related to internal pipe wall roughness) induced by scattering of ultrasound and it shows that these effects are large even without taking into account the associated flow disturbances. The flowmeter signals for a reference clamp-on flowmeter setup were simulated using 2-D finite element analysis including simplifying assumptions (to simulate the effect of flow) that were deemed appropriate. The validity of the simulations was indirectly verified by carrying out experiments with different separation distances between ultrasonic probes. The error predicted by the simulations and the experimentally observed errors were in good agreement. Then, this simulation method was applied on pipe walls with rough internal surfaces. For ultrasonic waves at 1 MHz, it was found that compared with smooth pipes, pipes with only a moderately rough internal surface (with 0.2-mm rms and 5-mm correlation length) can exhibit systematic errors of 2 in the flow velocity measurement. This demonstrates that pipe internal surface roughness is a very important factor that limits the accuracy of clamp on UFMs
A Comment on "Memory Effects in an Interacting Magnetic Nanoparticle System"
Recently, Sun et al reported that striking memory effects had been clearly
observed in their new experiments on an interacting nanoparticle system [1].
They claimed that the phenomena evidenced the existence of a spin-glass-like
phase and supported the hierarchical model. No doubt that a particle system may
display spin-glass-like behaviors [2]. However, in our opinion, the experiments
in Ref. [1] cannot evidence the existence of spin-glass-like phase at all. We
will demonstrate below that all the phenomena in Ref. [1] can be observed in a
non-interacting particle system with a size distribution. Numerical simulations
of our experiments also display the same features.Comment: A comment on "Phys. Rev. Lett. 91, 167206
Risk, cohabitation and marriage
This paper introduces imperfect information,learning,and risk aversion in a two sided matching model.The modelprovides a theoreticalframework for the com- monly occurring phenomenon of cohabitation followed by marriage,and is con- sistent with empirical findings on these institutions.The paper has three major results.First,individuals set higher standards for marriage than for cohabitation. When the true worth of a cohabiting partner is revealed,some cohabiting unions are converted into marriage while others are not.Second,individuals cohabit within classes.Third,the premium that compensates individuals for the higher risk involved in marriage over a cohabiting partnership is derived.This premium can be decomposed into two parts.The first part is a function of the individual ’s level of risk aversion,while the second part is a function of the di difference in risk between marriage and cohabitation.
'BioNessie(G) - a grid enabled biochemical networks simulation environment
The simulation of biochemical networks provides insight and
understanding about the underlying biochemical processes and pathways
used by cells and organisms. BioNessie is a biochemical network simulator
which has been developed at the University of Glasgow. This paper
describes the simulator and focuses in particular on how it has been
extended to benefit from a wide variety of high performance compute resources
across the UK through Grid technologies to support larger scale
simulations
From training to education. Lifelong learning in China
Lifelong learning was nothing unusual in the Chinese tradition. There was no age limit for education in ancient China, although education in those days was mainly for examinations, which were the testing ground for officials. A system of adult education was established in the 1950s, but that was to complement the formal education system as an instrument to implement state manpower planning. Lifelong education as a modern notion was introduced to China only at the end of the 1970s immediately after the Cultural Revolution. The notion did not gain much ground when education was closely associated with state manpower plans, and individuals did not have much room for personal development. The break away from strict manpower planning in the early 1980s has given rise to individual aspirations for education. Such aspirations have integrated with the long tradition of self-motivation in learning and have given rise to spectacular expansion in all kinds of adult education. While the motives for such learning are still very much related to jobs and incomes, alternative objectives for learning are fast developing outside the formal sectors of education. This article analyses the recent development of lifelong education in China, and uses Shanghai, the most developed city, as an illustration.postprin
A new class of -d topological superconductor with topological classification
The classification of topological states of matter depends on spatial
dimension and symmetry class. For non-interacting topological insulators and
superconductors the topological classification is obtained systematically and
nontrivial topological insulators are classified by either integer or .
The classification of interacting topological states of matter is much more
complicated and only special cases are understood. In this paper we study a new
class of topological superconductors in dimensions which has
time-reversal symmetry and a spin conservation symmetry. We
demonstrate that the superconductors in this class is classified by
when electron interaction is considered, while the
classification is without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur
- …
