6 research outputs found

    The Recuperative Heat Exchangers – The Mean Temperature Difference in the Special Cases of Heat Transfer

    No full text
    The heat exchangers are used to heat or cool the material streams. To calculate the heat exchanger, it is important to know the type of heat exchanger and its operating characteristic. This characteristic determines one of the key variables (e.g., F, NTUmin, or θ). In some special cases, it is not necessary to know its operating characteristic to calculate the heat exchanger. This article deals with these special cases. The article also contains a general dependency that allows checking the key variables related to a given heat exchanger

    Some Facts Resulting from the Key Variables Used in the Description of the Recuperative Heat Exchangers

    No full text
    There are the various types of heat exchangers. The selection of the heat exchanger right type is the first basic assumption for its optimal operation. The heat exchanger calculation itself is another prerequisite for its optimal operation. This article deals with the variables which are usually used to describe the stationary operation of any recuperative heat exchanger with two incoming and two outgoing streams. The knowledge of these variables, including the facts resulting from them, is necessary not only from the point of view of the calculation but also from the point of view of the evaluation of the experimental data of any heat exchanger. The variables values needed for the calculation of heat exchangers, so-called key variables, must always fall within the values range determined on the basis of generally valid knowledge about heat exchangers. The article also deals with the determination of the limit values defining the values range of these key variables

    Suitability Assessment of Two Types of Heat Exchangers for High Temperature, Naturally Circulating Helium Cooling Loop

    No full text
    The paper presents a comparison of the process properties of two types of the heat exchangers designed for the heat removal from a high temperature helium cooling loop with steady natural circulation of helium. The first considered heat exchanger is a shell and tube heat exchanger with U-tubes and the other one is a helical coil heat exchanger. Using the thermal and hydrodynamic process calculations, the thermal performance of the two alternative heat exchangers are determined, as well as the pressure drops of flowing fluids in their workspaces. The calculations have been done for several defined operating conditions of two considered types of heat exchangers. The operating conditions of heat exchangers correspond to the certain helium flow rates

    Thermal Characteristics of High Temperature Naturally Circulating Helium Cooling Loop

    No full text
    The paper deals with the process properties in terms of the heat transfer, i.e. the thermal performance of the thermal-process units within a helium loop intended for the testing of the decay heat removal (DHR) from the model of the gas-cooled fast reactor (GFR). The system is characterised by a natural circulation of helium, as a coolant, and assume the steady operating conditions of the circulation. The helium loop consists of four main components: the model of the gas-cooled fast reactor, the model of the heat exchanger for the decay heat removal, hot piping branch and cold piping branch. Using the thermal calculations, the thermal performance of the heat exchanger model and the thermal performance of the gas-cooled fast reactor model are determined. The calculations have been done for several defined operating conditions which correspond to the different helium flow rates within the system

    HVAC Systems Heat Recovery with Multi-Layered Oscillating Heat Pipes

    No full text
    The aim of this work is to investigate a heat performance of a Multi-Layered Oscillating Heat Pipes Heat Exchanger (ML-OHPHE) for the application of heat recovery in heating, ventilation and air conditioning systems (HVAC systems). The heat exchanger is investigated experimentally under different conditions of heat loads and filling ratios. The experimental data results are compared to the data obtained from Honeywell’s UniSim® Design Suite software. In the end the NTU analysis of the ML-OHPHE is done and a value of overall heat transfer coefficient is calculated. The results of the experiments indicate that the ML-OHPHE could serve as a completely passive heat transfer device in the application of heat recovery in HVAC systems

    Shell and Tube Heat Exchanger – the Heat Transfer Area Design Process

    No full text
    Nowadays, the operating nuclear reactors are able to utilise only 1 % of mined out uranium. An effective exploitation of uranium, even 60 %, is possible to achieve in so-called fast reactors. These reactors commercial operation is expected after the year 2035. Several design configurations of these reactors exist. Fast reactors rank among the so-called Generation IV reactors. Helium-cooled reactor, as a gas-cooled fast reactor, is one of them. Exchangers used to a heat transfer from a reactor active zone (i.e. heat exchangers) are an important part of fast reactors. This paper deals with the design calculation of U-tube heat exchanger (precisely 1-2 shell and tube heat exchanger with U-tubes): water – helium
    corecore