16 research outputs found

    National Government Responses to Marine Stewardship Council (MSC) Fisheries Certification: Insights from Atlantic Canada

    Get PDF
    Over the last decade, the proliferation of social and environmental certification programmes has attracted the attention of a growing number of political scientists interested in new forms of ‘private’ transnational governance. However, we still lack analyses on the nature and extent of different state responses to and involvement in new private transnational governance arrangements in particular sectors and in different jurisdictions. This paper advances our understanding of the interactions between nation-state and private transnational modes of governance by analysing the role of national government authorities in Marine Stewardship Council (MSC) fisheries certification in Atlantic Canada, known more for the disastrous collapse of Northern cod stocks than good marine stewardship. Focusing on the 2008 certification of Northern shrimp (Pandalus borealis) fisheries off the Province of Newfoundland and Labrador, the analysis finds that the implementation and maintenance of MSC certification in this case depended on significant support from government authorities. The delicate legitimacy of both authorities face a period of uncertainty in this case since some certified shrimp stocks appear to be in decline and perhaps also migrating northward off Newfoundland and Labrador

    On Imprimitive Representations of Finite Reductive Groups in Non-defining Characteristic

    Full text link
    In this paper, we begin with the classification of Harish-Chandra imprimitive representations in non-defining characteristic. We recall the connection of this problem to certain generalizations of Iwahori-Hecke algebras and show that Harish-Chandra induction is compatible with the Morita equivalence by Bonnaf\'{e} and Rouquier, thus reducing the classification problem to quasi-isolated blocks. Afterwards, we consider imprimitivity of unipotent representations of certain classical groups. In the case of general linear and unitary groups, our reduction methods then lead to results for arbitrary Lusztig series

    Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland

    Get PDF
    Recent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport1,2,3,4, important characteristics of mid-ocean ridge magmatism1,5. A consequence of such shallow crustal processing of magmas4,5 is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust6,7. Here we present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption, combined with associated gas emissions, reveal direct sourcing from a near-Moho magma storage zone. Geochemical proxies, which signify different mantle compositions and melting conditions, changed at a rate unparalleled for individual basaltic eruptions globally. Initially, the erupted lava was dominated by melts sourced from the shallowest mantle but over the following three weeks became increasingly dominated by magmas generated at a greater depth. This exceptionally rapid trend in erupted compositions provides an unprecedented temporal record of magma mixing that filters the mantle signal, consistent with processing in near-Moho melt lenses containing 107–108 m3 of basaltic magma. Exposing previously inaccessible parts of this key magma processing zone to near-real-time investigations provides new insights into the timescales and operational mode of basaltic magma systems

    Magmatic Controls on Volcanic Sulfur Emissions at the Iceland Hotspot

    Full text link
    Outgassing of sulfur (as SO2) is one of the principal hazards posed by volcanic eruptions. However, S emission potentials of most volcanoes globally are poorly constrained due to a short observational record and an incomplete understanding of the magmatic processes that influence pre-eruptive S concentrations. Here, we use a compilation of published and new data from melt inclusions (MIs)—which can preserve magmatic S concentrations prior to eruptive degassing—from the Iceland hotspot to evaluate the effects of mantle melting and crustal magmatic processes on the S budgets of Icelandic melts. We use MI data to estimate S emission potentials (ΔSmax, in ppm S) for 73 eruptions from 22 of Iceland's presently active ∼33 volcanic systems. We show that the S systematics of Icelandic melts are strongly regulated by the sulfide solubility limit. Sulfide-saturated conditions during lower-degree mantle melting, prevalent at off-rift zones, likely explains observed decoupling between S and Cl. During magmatic differentiation, a local maximum in modeled sulfide solubility occurs in evolved basalts (4–6 wt.% MgO), coinciding with highest MI S concentrations. Highest ΔSmax values (2,100–2,600 ppm) are found in the Hekla 1913 CE, Eldgjá 939 CE, and Surtsey 1963–1967 CE eruptions in the South Iceland Volcanic Zone. Our results extend the record of volcanic sulfur emissions back in time and can be used to assess volcanic gas hazards at Icelandic volcanoes where no direct measurements are available. Broadly, the results underline the governing role of sulfide saturation during melting and magma differentiation in controlling the eruptible S contents of Icelandic magmas.Peer reviewe

    Hydraulically linked reservoirs simultaneously fed the 1975–1984 Krafla Fires eruptions: Insights from petrochemistry

    Full text link
    The 1975–1984 Krafla Fires in northeast Iceland was the first plate-boundary rifting episode to be tracked using seismic and geodetic monitoring. Geophysical observations from this episode have inspired conceptual models of magma transport during plate spreading, but a lack of complementary petrologic insights has hindered a holistic understanding of the events. To address this knowledge gap, we studied the petrochemistry of all nine Krafla Fires basaltic eruptions. Our large dataset of new whole-rock, matrix glass and mineral analyses from samples collected during or shortly after each eruption reveal a clear compositional bimodality in the erupted magmas that persisted across the episode, with evolved quartz tholeiite (MgO = 5.7–6.4 wt.%) erupted inside Krafla caldera, and more primitive (usually olivine-normative) tholeiite (MgO = 6.4–8.7 wt%) erupted north of the caldera margin. Barometric calculations indicate tapping of these magmas from distinct reservoirs: a primitive lower-crustal reservoir at a most probable depth of ∼14–19 km, and a more evolved, shallower reservoir at a most probable depth of ∼7–9 km beneath the caldera. These reservoirs were tapped simultaneously in several of the nine eruptions, and in three events the two magma types mixed near the northern caldera margin. Varying levels of trace element depletion in the deep-sourced primitive melts reflect incomplete mixing of diverse mantle-derived melts at depth; the most enriched of these melts could be parental to evolved inside-caldera magma via fractional crystallization. Clinopyroxene rims on gabbroic nodules from primitive September 1984 lavas record lower crustal pressures, while diffusion models suggest that these rims grew up to within a few months before eruption. Ascent of the primitive magma from the lower crust thus occurred over timescales much shorter than eruptive repose periods, without prolonged stalling at shallow depths. These observations are inconsistent with the view that the eruptions were entirely fed by lateral magma outflow from the shallow reservoir. They instead require some decoupling of the flow paths of the two magma types: the primitive magma either bypassed the sub-caldera reservoir laterally or ascended vertically beneath the northern vents. The two reservoirs nonetheless shared a hydraulic connection and jointly responded to rifting. Comparison of the Krafla Fires with other rifting events and eruptions highlights the complexity and diversity of magma transport during plate boundary rifting events, which is not yet captured by a generalizable model. Integration of petrologic, geochemical and geophysical data is essential to provide a holistic view of future rifting events in Iceland and at other spreading centres.<br/
    corecore