24 research outputs found
On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network
Bilevel optimization has been applied to a wide variety of machine learning
models, and numerous stochastic bilevel optimization algorithms have been
developed in recent years. However, most existing algorithms restrict their
focus on the single-machine setting so that they are incapable of handling the
distributed data. To address this issue, under the setting where all
participants compose a network and perform peer-to-peer communication in this
network, we developed two novel decentralized stochastic bilevel optimization
algorithms based on the gradient tracking communication mechanism and two
different gradient estimators. Additionally, we established their convergence
rates for nonconvex-strongly-convex problems with novel theoretical analysis
strategies. To our knowledge, this is the first work achieving these
theoretical results. Finally, we applied our algorithms to practical machine
learning models, and the experimental results confirmed the efficacy of our
algorithms
Debridement of contaminated implants using air-polishing coupled with pH-responsive maximin H5-embedded metal-organic frameworks
The primary goal of peri-implantitis treatments remains the decontamination of implant surfaces exposed to polymicrobial biofilms and renders biocompatibility. In this study, we reported a synergistic strategy for the debridement and re-osteogenesis of contaminated titanium by using erythritol air abrasion (AA) coupled with an as-synthesized pH-responsive antimicrobial agent. Here, the anionic antibacterial peptide Maximin H5 C-terminally deaminated isoform (MH5C) was introduced into the Zeolitic Imidazolate Frameworks (ZIF-8) via a one-pot synthesis process. The formed MH5C@ZIF-8 nanoparticles (NPs) not only possessed suitable stability, but also guarantee the slow-release effect of MH5C. Antibacterial experiments revealed that MH5C@ZIF-8 NPs exhibited excellent antimicrobial abilities toward pathogenic bacteria of peri-implantitis, confirming ZIF-8 NPs as efficient nanoplatforms for delivering antibacterial peptide. To evaluate the comprehensive debridement efficiency, single-species as well as mixed-species biofilms were successively established on commercially used titanium surfaces and decontaminated with different methods: removed only by erythritol air abrasion, treated merely with MH5C@ZIF-8 NPs, or received both managements. The results demonstrated that only erythritol air abrasion accompanied with MH5C@ZIF-8 NPs at high concentrations eliminated almost all retained bacteria and impeded biofilm rehabilitation, while neither erythritol air abrasion nor MH5C@ZIF-8 NPs alone could achieve this. Subsequently, we evaluated the re-osteogenesis on previously contaminated surfaces which were treated with different debridement methods afterwards. We found that cell growth and osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs) in the group received both treatments (AA + MH5C@ZIF-8) were higher than those in other groups. Our work emphasized the great potential of the synergistic therapy as a credible alternative for removing microorganisms and rendering re-osseointegration on contaminated implant surfaces, boding well for the comprehensive applications in peri-implantitis treatments
Does AI-based Credit Scoring Improve Financial Inclusion? Evidence from Online Payday Lending
Artificial intelligence (AI) has become ubiquitous in the consumer finance industry. One of the major AI applications in this industry is AI-based credit scoring models. We investigate whether AI applications improve financial inclusion, as measured by three seemingly contradictory metrics, i.e. approval rate, default rate, and false rejection rate. We cooperate with an AI solution provider whose AI-based credit scoring models are widely used by online lenders in China. Using data obtained from these online lenders, we find that AI-based credit scoring models increase approval rate and reduce default rate simultaneously, which enhances both the magnitude and the quality of financial inclusion. AI-based credit scoring models also tend to reduce false rejection rate, suggesting that they can help provide access to capital to a previously underserved population. We plan to collect more data and conduct additional analyses in the future to enrich our current findings and explore for underlying mechanisms
Domestication affects sex-biased gene expression evolution in the duck
Genes with sex-biased expression are thought to underlie sexually dimorphic phenotypes and are therefore subject to different selection pressures in males and females. Many authors have proposed that sexual conflict leads to the evolution of sex-biased expression, which allows males and females to reach separate phenotypic and fitness optima. The selection pressures associated with domestication may cause changes in population architectures and mating systems, which in turn can alter their direction and strength. We compared sex-biased expression and genetic signatures in wild and domestic ducks (Anas platyrhynchos), and observed changes of sexual selection and identified the genomic divergence affected by selection forces. The extent of sex-biased expression in both sexes is positively correlated with the level of both d(N)/d(S) and nucleotide diversity. This observed changing pattern may mainly be owing to relaxed genetic constraints. We also demonstrate a clear link between domestication and sex-biased evolutionary rate in a comparative framework. Decreased polymorphism and evolutionary rate in domesticated populations generally matched life-history phenotypes known to experience artificial selection. Taken together, our work suggests the important implications of domestication in sex-biased evolution and the roles of artificial selection and sexual selection for shaping the diversity and evolutionary rate of the genome
RNA-Seq Analysis Reveals Expression Regulatory Divergence of W-Linked Genes between Two Contrasting Chicken Breeds
The regulation of gene expression is a complex process involving organism function and phenotypic diversity, and is caused by cis- and trans- regulation. While prior studies identified the regulatory pattern of the autosome rewiring in hybrids, the role of gene regulation in W sex chromosomes is not clear due to their degradation and sex-limit expression. Here, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibited broad differences in gender-related traits, and assessed the expression of the genes on the W chromosome to disentangle the contribution of cis- and trans-factors to expression divergence. We found that female-specific selection does not have a significant effect on W chromosome gene-expression patterns. For different tissues, there were most parental divergence expression genes in muscle, and also more heterosis compared with two other tissues. Notably, a broader pattern of trans regulation in the W chromosome was observed, which is consistent with autosomes. Taken together, this work describes the regulatory divergence of W-linked genes between two contrasting breeds and indicates sex chromosomes have a unique regulation and expression mechanism
Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis
Although many phenotypic traits of chickens have been well documented, the genetic patterns of gene expression levels in chickens remain to be determined. In the present study, we crossed two chicken breeds, White Leghorn (WL) and Cornish (Cor), which have been selected for egg and meat production, respectively, for a few hundred years. We evaluated transcriptome abundance in the brain, muscle, and liver from the day-old progenies of pure-bred WL and Cor, and the hybrids of these two breeds, by RNA-Seq in order to determine the inheritance patterns of gene expression. Comparison among expression levels in the different groups revealed that most of the genes showed conserved expression patterns in all three examined tissues and that brain had the highest number of conserved genes, which indicates that conserved genes are predominantly important compared to others. On the basis of allelic expression analysis, in addition to the conserved genes, we identified the extensive presence of additive, dominant (Cor dominant and WL dominant), over-dominant, and under-dominant genes in all three tissues in hybrids. Our study is the first to provide an overview of inheritance patterns of the transcriptome in layers and broilers, and we also provide insights into the genetics of chickens at the gene expression level
Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel
Microbiologically influenced corrosion is a major source of degradation of metals. Here, extracellular electron transfer is studied during pitting corrosion of stainless steel in the presence of an electroactive bacterium and a riboflavin electron shuttle, revealing bidirectional electron transfer