6 research outputs found

    Comment on "Deuterium--tritium fusion reactors without external fusion breeding" by Eliezer et al

    Full text link
    Inclusion of inverse Compton effects in the calculation of deuterium-deuterium burn under the extreme conditions considered by Eliezer et al. [Phys. Lett. A 243 (1998) 298] are shown to decrease the maximum burn temperature from about 300 keV to only 100--150 keV. This decrease is such that tritium breeding by the DD --> T + p reaction is not sufficient to replace the small amount of tritium that is initially added to the deuterium plasma in order to trigger ignition at less than 10 keV.Comment: 6 pages, 1 tabl

    Cornelius Lanczos's derivation of the usual action integral of classical electrodynamics

    Full text link
    The usual action integral of classical electrodynamics is derived starting from Lanczos's electrodynamics -- a pure field theory in which charged particles are identified with singularities of the homogeneous Maxwell's equations interpreted as a generalization of the Cauchy-Riemann regularity conditions from complex to biquaternion functions of four complex variables. It is shown that contrary to the usual theory based on the inhomogeneous Maxwell's equations, in which charged particles are identified with the sources, there is no divergence in the self-interaction so that the mass is finite, and that the only approximation made in the derivation are the usual conditions required for the internal consistency of classical electrodynamics. Moreover, it is found that the radius of the boundary surface enclosing a singularity interpreted as an electron is on the same order as that of the hypothetical "bag" confining the quarks in a hadron, so that Lanczos's electrodynamics is engaging the reconsideration of many fundamental concepts related to the nature of elementary particles.Comment: 16 pages. Final version to be published in "Foundations of Physics

    Maxwell Fields and Shear-Free Null Geodesic Congruences

    Full text link
    We study and report on the class of vacuum Maxwell fields in Minkowski space that possess a non-degenerate, diverging, principle null vector field (null eigenvector field of the Maxwell tensor) that is tangent to a shear-free null geodesics congruence. These congruences can be either surface forming (the tangent vectors proportional to gradients) or not, i.e., the twisting congruences. In the non-twisting case, the associated Maxwell fields are precisely the Lienard-Wiechert fields, i.e., those Maxwell fields arising from an electric monopole moving on an arbitrary worldline. The null geodesic congruence is given by the generators of the light-cones with apex on the world-line. The twisting case is much richer, more interesting and far more complicated. In a twisting subcase, where our main interests lie, it can be given the following strange interpretation. If we allow the real Minkowski space to be complexified so that the real Minkowski coordinates x^a take complex values, i.e., x^a => z^a=x^a+iy^a with complex metric g=eta_abdz^adz^b, the real vacuum Maxwell equations can be extended into the complex and rewritten as curlW =iWdot, divW with W =E+iB. This subcase of Maxwell fields can then be extended into the complex so as to have as source, a complex analytic world-line, i.e., to now become complex Lienard-Wiechart fields. When viewed as real fields on the real Minkowski space, z^a=x^a, they possess a real principle null vector that is shear-free but twisting and diverging. The twist is a measure of how far the complex world-line is from the real 'slice'. Most Maxwell fields in this subcase are asymptotically flat with a time-varying set of electric and magnetic moments, all depending on the complex displacements and the complex velocities.Comment: 3
    corecore