2 research outputs found

    The influence of steroids on noradrenaline-mediated contractile reactivity of the superficial nasal and facial veins in cycling gilts

    No full text
    The nasal venous blood may be directed through the facial vein into the systemic circulation or through the frontal vein into the venous cavernous sinus of the perihypophyseal vascular complex, where hormones and pheromones permeate from the venous blood into the arterial blood supplying the brain and hypophysis. The present study was designed to determine the effect of noradrenaline (NA) on the tension of the nasal, frontal and facial veins of cycling gilts, and influence of ovarian steroid hormones on NA-mediated contractile reactivity. Additionally, the enzyme dopamine-β-hydroxylase catalysing the conversion of dopamine to noradrenaline (DβH) was immunolocalized in these vessels. Among three studied veins, the frontal proximal vein, that fulfill a key role in the supply of the nasal venous blood into the venous cavernous sinus, reacted to NA most strongly (P<0.001) and this reaction was weaker in the periestrous period than in luteal phase (P<0.001). Inversely, the reaction to NA of the facial proximal vein, that carry blood to the peripheral circulation, was stronger in the periestrous period than in luteal phase (P<0.05). P4, E2 and T significantly lowered NA-mediated tension of the frontal proximal vein during the periestrous period (P<0.001), while in the luteal phase P4 might antagonize relaxing effect of E2 to this vessel. The result suggests that supply of the nasal venous blood into the venous cavernous sinus is greater during the periestrous period than during the luteal phase. DβH was clearly expressed in the muscular layer of the isolated superficial nasal and facial veins of gilts in both studied stages of the estrous cycle. We suggest that the reactivity of the superficial veins of the nose and face to NA combined with the previously demonstrated reactivity of these veins to steroid ovarian hormones and male steroid pheromones may regulate the access of priming pheromone androstenol (resorebed in the nasal cavity) to the brain of gilts during periestrous period via humoral local destination transfer

    Mobilization of hematopoietic stem and progenitor cells in mice

    No full text
    Animal models have added significantly to our understanding of the mechanism(s) of hematopoietic stem and progenitor cell (HSPC) mobilization. Such models suggest that changes in the interaction between the HSPC and the hematopoietic microenvironmental 'niche' (cellular and extracellular components) are critical to the process. The increasing availability of recombinant proteins (growth factors, cytokines, chemokines), antibodies, drugs (agonists and antagonists), and mutant and genetically modified animal models [gene knock-in (KI) and knock-out (KO)] continue to add to the tools available to better understand and manipulate mobilization processes.</p
    corecore