4 research outputs found
Does Diabetes Accelerate the Progression of Aortic Stenosis through Enhanced Inflammatory Response within Aortic valves?
Diabetes predisposes to aortic stenosis (AS). We aimed to investigate if diabetes affects the expression of selected coagulation proteins and inflammatory markers in AS valves. Twenty patients with severe AS and concomitant type 2 diabetes mellitus (DM) and 40 well-matched patients without DM scheduled for valve replacement were recruited. Valvular tissue factor (TF), TF pathway inhibitor (TFPI), prothrombin, C-reactive protein (CRP) expression were evaluated by immunostaining and TF, prothrombin, and CRP transcripts were analyzed by real-time PCR. DM patients had elevated plasma CRP (9.2 [0.74–51.9] mg/l vs. 4.7 [0.59–23.14] mg/l, p = 0.009) and TF (293.06 [192.32–386.12] pg/ml vs. 140 [104.17–177.76] pg/ml, p = 0.003) compared to non-DM patients. In DM group, TF−, TFPI−, and prothrombin expression within valves was not related to demographics, body mass index, and concomitant diseases, whereas increased expression related to DM was found for CRP on both protein (2.87 [0.5–9]% vs. 0.94 [0–4]%, p = 0.01) and transcript levels (1.3 ± 0.61 vs. 0.22 ± 0.43, p = 0.009). CRP-positive areas were positively correlated with mRNA TF (r = 0.84, p = 0.036). Diabetes mellitus is associated with enhanced inflammation within AS valves, measured by CRP expression, which may contribute to faster AS progression
Laryngeal embryonal rhabdomyosarcoma in an adult - A case presentation in the eyes of geneticists and clinicians
<p>1. Abstract</p> <p>Background</p> <p>Rhabdomyosarcoma is a solid tumor, resulting from dysregulation of the skeletal myogenesis program. For rhabdomyosarcomas (RMS) with a predilection for the head and neck, genitourinary tract, extremities, trunk, retroperitoneum, the larynx is still an unusual site. Till now only several cases of this laryngeal tumor have been described in world literature in the adult population. The entire spectrum of genetic factors underlying RMS development and progression is unclear until today. Multiple signaling pathways seem to be involved in ERMS development and progression.</p> <p>Case presentation</p> <p>In this paper we report an interesting RMS case in which the disease was located within the glottic region. We report an embryonal rhabdomyosarcoma of the larynx in 33 year-old man. After unsuccessful chemotherapy hemilaryngectomy was performed. In follow up CT no signs of recurrence were found. Recently patient is recurrence free for 62 months.</p> <p>Conclusions</p> <p>Considering the histological diagnosis and the highly aggressive nature of the lesion for optimal diagnosis positron electron tomography (PET) and computerized tomography (CT) of the neck and thorax should be performed. At this time surgical treatment with adjuvant radiotherapy seems to be the treatment of choice for this disease. Rhabdomyosarcoma of the larynx has a better prognosis than elsewhere in the body, probably because of its earlier recognition and accessibility to radical surgery.</p
Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA
Three Rat1/Xrn2 homologues exist in Arabidopsis thaliana: nuclear AtXRN2 and AtXRN3, and cytoplasmic AtXRN4. The latter has a role in degrading 3′ products of miRNA-mediated mRNA cleavage, whereas all three proteins act as endogenous post-transcriptional gene silencing suppressors. Here we show that, similar to yeast nuclear Rat1, AtXRN2 has a role in ribosomal RNA processing. The lack of AtXRN2, however, does not result in defective formation of rRNA 5′-ends but inhibits endonucleolytic cleavage at the primary site P in the pre-rRNA resulting in the accumulation of the 35S* precursor. This does not lead to a decrease in mature rRNAs, as additional cleavages occur downstream of site P. Supplementing a P-site cleavage-deficient xrn2 plant extract with the recombinant protein restores processing activity, indicating direct participation of AtXRN2 in this process. Our data suggest that the 5′ external transcribed spacer is shortened by AtXRN2 prior to cleavage at site P and that this initial exonucleolytic trimming is required to expose site P for subsequent endonucleolytic processing by the U3 snoRNP complex. We also show that some rRNA precursors and excised spacer fragments that accumulate in the absence of AtXRN2 and AtXRN3 are polyadenylated, indicating that these nucleases contribute to polyadenylation-dependent nuclear RNA surveillance