157 research outputs found

    Mortality Risk Associated with Short-Term Exposure to Traffic Particles and Sulfates

    Get PDF
    BACKGROUND: Many studies have shown that airborne particles are associated with increased risk of death, but attention has more recently focused on the differential toxicity of particles from different sources. Geographic information system (GIS) approaches have recently been used to improve exposure assessment, particularly for traffic particles, but only for long-term exposure. OBJECTIVES: We analyzed approximately 100,000 deaths from all, cardiovascular, and respiratory causes for the years 1995–2002 using a case–crossover analysis. METHODS: Estimates of exposure to traffic particles were geocoded to the address of each decedent on the day before death and control days, with these estimates derived from a GIS-based exposure model incorporating deterministic covariates, such as traffic density and meteorologic factors, and a smooth function of latitude and longitude. RESULTS: We estimate that an IQR increase in traffic particle exposure on the day before death is associated with a 2.3% increase [95% confidence interval (CI), 1.2 to 3.4%] in all-cause mortality risk. Stroke deaths were particularly elevated (4.4%; 95% CI, −0.2 to 9.3%), as were diabetes deaths (5.7%; 95% CI, −1.7 to 13.7%). Sulfate particles are spatially homogeneous, and using a central monitor, we found that an IQR increase in sulfate levels on the day before death is associated with a 1.1% (95% CI, 0.1 to 2.0%) increase in all-cause mortality risk. CONCLUSIONS: Both traffic and powerplant particles are associated with increased deaths in Boston, with larger effects for traffic particles

    Measurement error caused by spatial misalignment in environmental epidemiology

    Get PDF
    Copyright @ 2009 Gryparis et al - Published by Oxford University Press.In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area.This research was supported by NIEHS grants ES012044 (AG, BAC), ES009825 (JS, BAC), ES007142 (CJP), and ES000002 (CJP), and EPA grant R-832416 (JS, BAC)

    Semiparametric Latent Variable Regression Models for Spatio-temporal Modeling of Mobile Source Particles in the Greater Boston Area

    Get PDF
    Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separatel

    Medium-Term Exposure to Traffic-Related Air Pollution and Markers of Inflammation and Endothelial Function

    Get PDF
    Bac k g r o u n d: Exposure to traffic-related air pollution (TRAP) contributes to increased cardiovascular risk. Land-use regression models can improve exposure assessment for TRAP. Objectives: We examined the association between medium-term concentrations of black carbon (BC) estimated by land-use regression and levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1), both markers of inflammatory and endothelial response. Me t h o d s: We studied 642 elderly men participating in the Veterans Administration (VA) Normative Aging Study with repeated measurements of sICAM‑1 and sVCAM‑1 during 1999–2008. Daily estimates of BC exposure at each geocoded participant address were derived using a validated spatiotemporal model and averaged to form 4-, 8-, and 12-week exposures. We used linear mixed models to estimate associations, controlling for confounders. We examined effect modification by statin use, obesity, and diabetes. Re s u l t s: We found statistically significant positive associations between BC and sICAM‑1 for averages of 4, 8, and 12 weeks. An interquartile-range increase in 8-week BC exposure (0.30 μg/m3) was associated with a 1.58 % increase in sICAM‑1 (95 % confidence interval, 0.18–3.00%). Overall association

    Atmospheric circulation types and daily mortality in Athens, Greece.

    Get PDF
    We investigated the short-term effects of synoptic and mesoscale atmospheric circulation types on mortality in Athens, Greece. The synoptic patterns in the lower troposphere were classified in 8 a priori defined categories. The mesoscale weather types were classified into 11 categories, using meteorologic parameters from the Athens area surface monitoring network; the daily number of deaths was available for 1987-1991. We applied generalized additive models (GAM), extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns. We adjusted for long-term trends, day of the week, ambient particle concentrations, and additional temperature effects. Both classifications, synoptic and mesoscale, explain the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southeasterly flow [increase 10%; 95% confidence interval (CI), 6.1-13.9% compared to the high-low pressure system), followed by zonal flow (5.8%; 95% CI, 1.8-10%). The high-low pressure system and the northwesterly flow are associated with the lowest mortality. The seasonal patterns are consistent with the annual pattern. For mesoscale categories, in the cold period the highest mortality is observed during days characterized by the easterly flow category (increase 9.4%; 95% CI, 1.0-18.5% compared to flow without the main component). In the warm period, the highest mortality occurs during the strong southerly flow category (8.5% increase; 95% CI, 2.0-15.4% compared again to flow without the main component). Adjusting for ambient particle levels leaves the estimated associations unchanged for the synoptic categories and slightly increases the effects of mesoscale categories. In conclusion, synoptic and mesoscale weather classification is a useful tool for studying the weather-health associations in a warm Mediterranean climate situation

    Traffic particles and occurrence of acute myocardial infarction: a case–control analysis

    Get PDF
    OBJECTIVES: We modelled exposure to traffic particles using a latent variable approach and investigated whether long-term exposure to traffic particles is associated with an increase in the occurrence of acute myocardial infarction (AMI) using data from a population-based coronary disease registry. METHODS: Cases of individually validated AMI were identified between 1995 and 2003 as part of the Worcester Heart Attack Study. Population controls were selected from Massachusetts, USA, resident lists. NO(2) and PM(2.5) filter absorbance were measured at 36 locations throughout the study area. The air pollution data were used to estimate exposure to traffic particles using a semiparametric latent variable regression model. Conditional logistic models were used to estimate the association between exposure to traffic particles and occurrence of AMI. RESULTS: Modelled exposure to traffic particles was highest near the city of Worcester. Cases of AMI were more exposed to traffic and traffic particles compared to controls. An interquartile range increase in modelled traffic particles was associated with a 10% (95% CI 4% to 16%) increase in the odds of AMI. Accounting for spatial dependence at the census tract, but not block group, scale substantially attenuated this association. CONCLUSIONS: These results provide some support for an association between long-term exposure to traffic particles and risk of AMI. The results were sensitive to the scale selected for the analysis of spatial dependence, an issue that requires further investigation. The latent variable model captured variation in exposure, although on a relatively large spatial scale

    The effects of particulate and ozone pollution on mortality in Moscow, Russia

    Get PDF
    The objectives of this study were (1) to evaluate how acute mortality responds to changes in particulate and ozone (O3) pollution levels, (2) to identify vulnerable population groups by age and cause of death, and (3) to address the problem of interaction between the effects of O3 and particulate pollution. Time-series of daily mortality counts, air pollution, and air temperature were obtained for the city of Moscow during a 3-year period (2003–2005). To estimate the pollution-mortality relationships, we used a log-linear model that controlled for potential confounding by daily air temperature and longer term trends. The effects of 10 μg/m3 increases in daily average measures of particulate matter ≤10 μm in aerodynamic diameter (PM10) and O3 were, respectively, (1) a 0.33% [95% confidence interval (CI) 0.09–0.57] and 1.09% (95% CI 0.71–1.47) increase in all-cause non-accidental mortality in Moscow; (2) a 0.66% (0.30–1.02) and 1.61% (1.01–2.21) increase in mortality from ischemic heart disease; (3) a 0.48% (0.02–0.94) and 1.28% (0.54–2.02) increase in mortality from cerebrovascular diseases. In the age group >75 years, mortality increments were consistently higher, typically by factor of 1.2 – 1.5, depending upon the cause of death. PM10-mortality relationships were significantly modified by O3 levels. On the days with O3 concentrations above the 90th percentile, PM10 risk for all-cause mortality was threefold greater and PM10 risk for cerebrovascular disease mortality was fourfold greater than the unadjusted risk estimate

    Measurement error in a multi-level analysis of air pollution and health: a simulation study.

    Get PDF
    BACKGROUND: Spatio-temporal models are increasingly being used to predict exposure to ambient outdoor air pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health. Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term pollutant exposure and health. METHODS: Our study was based on a theoretical sample of 1000 geographical sites within Greater London. Simulations of "true" site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period 2009-2013 from fixed location urban background monitors in the London area. In the context of a multi-level single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the Pearson correlation between modelled and "true" data and the ratio of their variances (model versus "true") and assumed these parameters were the same spatially and temporally. RESULTS: In general, health effect estimates associated with both long and short-term exposure were biased towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to 0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance ratios > 1 but inflated for variance ratios < 1. CONCLUSION: While our findings suggest that in most cases modelling errors result in attenuation of the effect estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and direction of bias appears to depend on the relationship between modelled and "true" data in terms of their correlation and the ratio of their variances. These factors should be taken into account when assessing the validity of modelled air pollution predictions for use in complex epidemiological models
    corecore