5 research outputs found

    The connection analysis between the dilution of the deposited Fe-Cr-V-Mo-C layer by the basic metal and the parameters of its microstructure

    Get PDF
    In this work, the structure of the Fe-Cr-V-Mo-C coatings received by plasma transferred arc cladding was investigated. Coatings were deposited on plates with a thickness of 10 mm and made from constructional steel (steel 20). The correlation analysis of relationships between dilution of the deposited layers by the basic metal and the parameters of their microstructure was carried out. The parameters were as follows: volume fraction, a size, a shape factor, the distance between particles, the number of particles of vanadium carbide, volume fraction of the eutectic on the basis of carbide M[7]C[3] and the distances between its colonies, as well as the volume fraction of the [alpha]-phase in the alloy matrix

    Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    No full text
    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)(Formula presented.)W(Formula presented.)C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250 (Formula presented.)C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead
    corecore