2 research outputs found

    Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach

    Get PDF
    Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.FEDER Project Infrastructure IE_2019-198Instituto de Salud Carlos IIIEuropean Commission PI20/01278FIBAO EU-FORA Programme (2020/2021

    Impact of Cumulative Environmental and Dietary Xenobiotics on Human Microbiota: Risk Assessment for One Health

    Get PDF
    Chemical risk assessment in the context of the risk analysis framework was initially designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the need of multiple stressors assessment was revealed to be more reliable regarding the occurrence and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started to be the recommended approach. As toxicant mixtures and their “cocktail effects” are considered to be main hazards, the most important exposure for these xenobiotics would be of dietary and environmental origin. In fact, even a more holistic prism should currently be considered. In this sense, the definition of One Health refers to simultaneous actions for improving human, animal, and environmental health through transdisciplinary cooperation. Global policies necessitate going beyond the classical risk assessment for guaranteeing human health through actions and implementation of the One Health approach. In this context, a new perspective is proposed for the integration of microbiome biomarkers and next generation probiotics potentially impacting and modulating not only human health, but plant, animal health, and the environment
    corecore