21 research outputs found

    A Translational Pathway for Recombinant Adeno-Associated Virus Human Gene Therapy: From Target Identification and Animal Modeling of the Disease to Non-Human Primate and Human Studies

    Get PDF
    Many steps go into developing a clinical viral gene therapy. The course starts with appropriate disease selection and moves through the many hurdles of in-vitro testing, animal model validation and proof-of-concept studies, all the way through pre-clinical large animal studies. In this thesis, I propose to outline the process of developing a translation pathway for a gene therapy using recombinant adeno-associated virus (rAAV). I will expand on this outline using data that I have generated during the course of my Ph.D. that ranges from animal model validation all the way through pre-clinical vector stability studies. Two disease models will be discussed throughout this thesis, Cockayne Syndrome (CS) and Alpha-1 Antitrypsin Deficiency (AATD). Cockayne Syndrome is a rare autosomal recessive genetic disorder involving mutations in either the CSA or CSB gene, leading to defects in DNA repair. Clinically this presents as progressive degeneration of the central nervous system, retina, cardiovascular system, and cochlea, which leads to mental retardation, post-natal growth defects, ocular abnormalities, and shortened life expectancy. Alpha-1 antitrypsin is a serine protease inhibitor largely produced in the liver that mainly functions to inhibit neutrophil elastase within the lung. AATD leads to an increased risk of emphysema, with shortened life expectancy, and also results in accumulations of mutant AAT polymers in the liver, sometimes leading to liver failure. Using these two disease models I will outline the upstream and downstream pre-clinical work as well as the transition to clinical trials of a rAAV based gene therapy

    Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    Get PDF
    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration

    Serum Levels of Alpha-1 Antitrypsin following Vascular Limb or Intra-Muscular Delivery of AAV1 or AAV8 Gene Therapy Vectors in Rhesus Macaques

    Get PDF
    Alpha-one antitrypsin (AAT) deficiency is a genetic disease that results in both lung disease and potentially liver failure in affected patients. In un-affected people AAT is produced in the liver and secreted to act as an anti-protease (primarily counteracting the effects of neutrophil elastase) in the lung. On-going human clinical trials have focused on intra-muscular delivery of adeno-associated virus (AAV1) to patients. The goal of delivery to the muscle is to have the myocytes serve as bio-factories to produce normal AAT protein and secrete it into the blood where it can exert its normal function in the lung. In the last Phase II trial patients in the highest dose cohort were given 100 intra-muscular (IM) injections with serum AAT levels still below therapeutic thresholds. Previous work has shown that delivering AAV vector to the musculature of the limb via the vasculature, while blood flow is obstructed using a tourniquet, leads to wide-spread gene expression in myocytes. We hypothesize that local delivery via IM injection results in saturated AAT expression within the myocytes surrounding the injection sight and that a more widespread delivery would result in an overall increase in serum AAT levels with the same dose of AAV gene therapy vector due to production by a larger overall number of myocytes. We have been able to show that we can attain similar or slightly higher (573.0 ng/ml versus 562.5 ng/nl) serum AAT levels using a vascular delivery method in rhesus macaques when compared to IM delivery. These results have been obtained using AAV1. Animals receiving either AAV1 or AAV8 show a decrease in muscle immune cell infiltrates following intra-vascular delivery versus IM delivery, which may improve long-term expression. Serum AAT data from animals dosed using AAV8, a serotype shown to better target muscle following vascular delivery, are currently being processed

    Sustained Expression with Partial Correction of Neutrophil Defects 5 Years After Intramuscular rAAV1 Gene Therapy for Alpha-1 Antitrypsin Deficiency

    Get PDF
    Alpha-1 antitrypsin (AAT) deficiency is a common monogenic disorder resulting in emphysema, which is currently treated with weekly infusions of protein replacement. We previously reported achieving plasma wild-type (M) AAT concentrations at 2.5-3.8% of the therapeutic level at 1 year after intramuscular (IM) administration of 6×1012vg/kg of a recombinant adeno-associated virus serotype 1 (rAAV1)-AAT vector in AAT-deficient patients, with an associated regulatory T cell (Treg) response to AAV1 capsid epitopes in the absence of any exogenous immune suppression. Here, we report sustained expression at greater than 2% of the therapeutic level for 5 years after one-time treatment with rAAV1-AAT in an AAT-deficient patient from that study, with partial correction of neutrophil defects previously reported in AAT-deficient patients. There was also evidence of an active Treg response (FoxP3+, Helios+) and an exhausted cytotoxic T cell response (PD-1+, LAG-3+) to AAV1 capsid. These findings suggest that muscle-based AAT gene replacement is toleragenic and that very stable levels of M AAT may exert beneficial effects at lower concentrations than previously anticipated

    Therapeutic plasma exchange to mitigate flunixin meglumine overdose in a cria

    Get PDF
    Objective: To describe the use of therapeutic plasma exchange (TPE) in the treatment of flunixin meglumine overdose in a cria. Case Summary: A 3‐day‐old alpaca cria was diagnosed with ureteral obstruction and agenesis resulting in severe bilateral hydronephrosis. During hospitalization, the cria inadvertently received a flunixin meglumine overdose of >65 mg/kg. Here, we report the use of lipid emulsion and TPE to mitigate flunixin meglumine toxicosis. TPE appeared to prevent any flunixin‐induced kidney or gastrointestinal injury, even in a patient with congenital defects of the urinary tract. New Information Provided: This is the first report of the use of TPE in a cria

    Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study

    Get PDF
    Phase 1 and phase 2 gene therapy trials using intramuscular (IM) administration of a recombinant adeno-associated virus serotype 1 (rAAV1) for replacement of serum alpha-1 antitrypsin (AAT) deficiency have shown long-term (5-year) stable transgene expression at approximately 2% to 3% of therapeutic levels, arguing for the long-term viability of this approach to gene replacement of secreted serum protein deficiencies. However, achieving these levels required 100 IM injections to deliver 135 mL of vector, and further dose escalation is limited by the scalability of direct IM injection. To further advance the dose escalation, we sought to bridge the rAAV-AAT clinical development program to regional limb perfusion, comparing two methods previously established for gene therapy, peripheral venous limb perfusion (VLP) and an intra-arterial push and dwell (IAPD) using rAAV1 and rAAV8 in a non-human primate (rhesus macaque) study. The rhesus AAT transgene was used with a c-myc tag to enable quantification of transgene expression. 5 cohorts of animals were treated with rAAV1-IM, rAAV1-VLP, rAAV1-IAPD, rAAV8-VLP, and rAAV8-IAPD (n = 2-3), with a dose of 6 x 10(12) vg/kg. All methods were well tolerated clinically. Potency, as determined by serum levels of AAT, of rAAV1 by the VLP method was twice that observed with direct IM injection; 90 mug/mL with VLP versus 38 mug/mL with direct IM injection. There was an approximately 25-fold advantage in estimated vector genomes retained within the muscle tissue with VLP and a 5-fold improvement in the ratio of total vector genomes retained within muscle as compared with liver. The other methods were intermediate in the potency and retention of vector genomes. Examination of muscle enzyme (CK) levels indicated rAAV1-VLP to be equally safe as compared with IM injection, while the IAPD method showed significant CK elevation. Overall, rAAV1-VLP demonstrates higher potency per vector genome injected and a greater total vector retention within the muscle, as compared to IM injection, while enabling a much greater total dose to be delivered, with equivalent safety. These data provide the basis for continuation of the dose escalation of the rAAV1-AAT program in patients and bode well for rAAV-VLP as a platform for replacement of secreted proteins
    corecore