16 research outputs found

    Detection of the KIT D816V mutation in peripheral blood of systemic mastocytosis: diagnostic implications

    No full text
    Recent studies have found the KIT D816V mutation in peripheral blood of virtually all adult systemic mastocytosis patients once highly sensitive PCR techniques were used; thus, detection of the KIT D816V mutation in peripheral blood has been proposed to be included in the diagnostic work-up of systemic mastocytosis algorithms. However, the precise frequency of the mutation, the biological significance of peripheral blood-mutated cells and their potential association with involvement of bone marrow hematopoietic cells other than mast cells still remain to be investigated. Here, we determined the frequency of peripheral blood involvement by the KIT D816V mutation, as assessed by two highly sensitive PCR methods, and investigated its relationship with multilineage involvement of bone marrow hematopoiesis. Overall, our results confirmed the presence of the KIT D816V mutation in peripheral blood of most systemic mastocytosis cases (161/190; 85%)-with an increasing frequency from indolent systemic mastocytosis without skin lesions (29/44; 66%) to indolent systemic mastocytosis with skin involvement (124/135; 92%), and more aggressive disease subtypes (11/11; 100%)-as assessed by the allele-specific oligonucleotide-qPCR method, which was more sensitive (P < .0001) than the peptide nucleic acid-mediated PCR approach (84/190; 44%). Although the presence of the KIT mutation in peripheral blood, as assessed by the allele-specific oligonucleotide-qPCR technique, did not accurately predict for multilineage bone marrow involvement of hematopoiesis, the allele-specific oligonucleotide-qPCR allele burden and the peptide nucleic acid-mediated-PCR approach did. These results suggest that both methods provide clinically useful and complementary information through the identification and/or quantification of the KIT D816V mutation in peripheral blood of patients suspected of systemic mastocytosis

    Ex vivo identification and characterization of a population of CD13(high) CD105(+) CD45(-) mesenchymal stem cells in human bone marrow

    Get PDF
    Introduction: Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Currently, the definition of MSCs relies on a combination of phenotypic, morphological and functional characteristics which are typically evaluated upon in vitro expansion, a process that may ultimately lead to modulation of the immunophenotypic, functional and/or genetic features of these cells. Therefore, at present there is great interest in providing markers and phenotypes for direct in vivo and ex vivo identification and isolation of MSCs. Methods: Multiparameter flow cytometry immunophenotypic studies were performed on 65 bone marrow (BM) samples for characterization of CD13(high) CD105(+) CD45(-) cells. Isolation and expansion of these cells was performed in a subset of samples in parallel to the expansion of MSCs from mononuclear cells following currently established procedures. The protein expression profile of these cells was further assessed on (paired) primary and in vitro expanded BM MSCs, and their adipogenic, chondrogenic and osteogenic differentiation potential was also determined. Results: Our results show that the CD13(high) CD105(+) CD45(-) immunophenotype defines a minor subset of cells that are systematically present ex vivo in normal/reactive BM (n = 65) and that display immunophenotypic features, plastic adherence ability, and osteogenic, adipogenic and chondrogenic differentiation capacities fully compatible with those of MSCs. In addition, we also show that in vitro expansion of these cells modulates their immunophenotypic characteristics, including changes in the expression of markers currently used for the definition of MSCs, such as CD105, CD146 and HLA-DR. Conclusions: BM MSCs can be identified ex vivo in normal/reactive BM, based on a robust CD13(high) CD105(+) and CD45(-) immunophenotypic profile. Furthermore, in vitro expansion of these cells is associated with significant changes in the immunophenotypic profile of MSCs
    corecore