2 research outputs found

    Diversity of Staphylococcus aureus associated with mastitis from dairy cows in Rwanda

    No full text
    The objective of the present study was to examine the diversity of Staphylococcus aureus from mastitis milk samples of cows in Rwanda.A total of 1080 quarter milk samples from 279 dairy cows were collected in 80 different farms from all five provinces of Rwanda. In total, 135 S. aureus isolates were obtained and subjected to genotyping (spa typing, DNA microarray, whole-genome sequencing (WGS)), antimicrobial susceptibility testing (AST) and phenotypic profiling by Fourier Transform Infrared (FTIR) spectroscopy (including capsular serotyping).Resistance to penicillin and/or tetracycline was most frequently observed. Ten sequence types (STs) (ST1, ST151, ST152, ST5477, ST700, ST7110, ST7983, ST7984, ST8320, ST97) belonging to seven clonal complexes (CCs) (CC1, CC130, CC152, CC3591, CC3666, CC705, CC97) were detected. The Panton-Valentine leukocidin (PVL) genes (lukF-PV/lukS-PV), the bovine leukocidin genes (lukM/lukF-P83) and the human and bovine toxic shock syndrome toxin gene tst-1 variants were detected. FTIR-based capsular serotyping showed CC-specific differences. Most CC97 (cap5 allele) isolates were primarily nonencapsulated (82%), whereas isolates of CC3591 and CC3666 (cap8 allele) were mostly encapsulated (86.4% and 57.8%, respectively). Our results underline the widespread global distribution of cattle-adapted CC97.The presence of CC3591 and CC3666 in bovine mastitis suggests an important role in cattle health and dairy production in Rwanda. The results of the present study support the need for a rigorous One-Health Surveillance program of the bovine-human interface

    Cross-species communication via agr controls phage susceptibility in Staphylococcus aureus

    No full text
    Bacteria use quorum sensing (QS) to coordinate group behavior in response to cell density, and some bacterial viruses (phages) also respond to QS. In Staphylococcus aureus, the agr-encoded QS system relies on accumulation of auto-inducing cyclic peptides (AIPs). Other staphylococci also produce AIPs of which many inhibit S. aureus agr. We show that agr induction reduces expression of tarM, encoding a glycosyltransferase responsible for α-N-acetylglucosamine modification of the major S. aureus phage receptor, the wall teichoic acids. This allows lytic phage Stab20 and related phages to infect and kill S. aureus. However, in mixed communities, producers of inhibitory AIPs like S. haemolyticus, S. caprae, and S. pseudintermedius inhibit S. aureus agr, thereby impeding phage infection. Our results demonstrate that cross-species interactions dramatically impact phage susceptibility. These interactions likely influence microbial ecology and impact the efficacy of phages in medical and biotechnological applications such as phage therapy
    corecore