2 research outputs found

    Distribution of Mesoscale Convective Complex Rainfall in the United States

    Get PDF
    Several annual mesoscale convective complex (MCC) summaries have been compiled since Maddox strictly defined their criteria in 1980. These previous studies have largely been independent of each other and therefore have not established the extended spatial and temporal patterns associated with these large, quasi-circular, and, typically, severe convective systems. This deficiency is primarily due to the difficulty of archiving enough satellite imagery to accurately record each MCC based on Maddox’s criteria. Consequently, this study utilizes results from each of the MCC summaries compiled between 1978 and 1999 for the United States in order to develop a more complete climatology, or description of long-term means and interannual variation, of these storms. Within the 22-yr period, MCC summaries were compiled for a total of 15 yr. These 15 yr of MCC data are employed to establish estimated tracks for all MCCs documented and, thereafter, are utilized to determine MCC populations on a monthly, seasonal, annual, and multiyear basis. Subsequent to developing an extended climatology of MCCs, the study ascertains the spatial and temporal patterns of MCC rainfall and determines the precipitation contributions made by MCCs over the central and eastern United States. Results indicate that during the warm season, significant portions of the Great Plains receive, on average, between 8% and 18% of their total precipitation from MCC rainfall. However, there is large yearly and even monthly variability in the location and frequency of MCC events that leads to highly variable precipitation contributions

    Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers

    No full text
    The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity. © 2021. The Authors. GeoHealth published by Wiley Periodicals LLC on behalf of American Geophysical Union
    corecore