74 research outputs found

    Room temperature lithium metal batteries based on a new Gel Polymer Electrolyte membrane

    No full text
    A new effective Gel Polymer Electrolyte membrane based on two polymers, the polyethylene oxide (PEO), a poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) copolymer and a plasticizer, the dibutylphtalate (DBP), was realized. This separator membrane was made by adjunction, through lamination, of an industrially made DBP/PVdF-HFP film and a homemade DBP/PEO thin film. Once the plasticizer was removed and the separator gelled by the electrolyte, the PEO enables the formation of a good interface with the lithium while the PVdF-HFP film brings the mechanical strength to the membrane. The electrochemical behavior of lithium batteries based on this bi-layer separator was investigated versus temperature, cycling potential and cycling rate. Owing to the promising results obtained with laboratory cells, a 1 Ah prototype was successfully assembled, and its cycling and rate performances were reported. © 2005 Elsevier B.V. All rights reserved

    Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries

    No full text
    To benefit from the large electrochemical capacity advantages offered by Li-driven conversion reactions and to overcome poor kinetics, a new electrode configuration concept is reported. The originality of this electrode design is nested in metallurgical aspects of stainless steel, namely, the appearance of temperature-driven surface microstructures that enable the growth of a nanostructured, electrochemically active, chromium-rich oxide surface layer in close contact with a current collector. The thickness of the oxide layer can reach hundreds of nanometers and is shown to be rooted in the preferential migration of Cr toward the sample surface. We further show that chemical etching of the stainless steel surface, prior to high-temperature annealing, enables reversible capacities as high as 750 mAh/g of chromium-rich oxide for at least 800 cycles. On the basis of modeling, several scenarios involving stainless steel/chromium-based oxides current collectors of various porosities show how this new electrode configuration could boost the electrode capacity beyond that of today's carbon negative electrodes used in Li-ion cells by a factor of 2 or 3. © 2005 American Chemical Society
    • …
    corecore