51 research outputs found

    Live Demo: E2P–Events to Polarization Reconstruction from PDAVIS Events

    Get PDF
    This demonstration shows live operation of of PDAVIS polarization event camera reconstruction by the E2P DNN reported in the main CVPR conference paper Deep Polarization Reconstruction with PDAVIS Events (paper 9149 [7]). Demo code: github.com/SensorsINI/e2

    Fluorescence-guided surgical system using holographic display: From phantom studies to canine patients

    Get PDF
    SIGNIFICANCE: Holographic display technology is a promising area of research that can lead to significant advancements in cancer surgery. We present the benefits of combining bioinspired multispectral imaging technology with holographic goggles for fluorescence-guided cancer surgery. Through a series of experiments with 43D-printed phantoms, small animal models of cancer, and surgeries on canine patients with head and neck cancer, we showcase the advantages of this holistic approach. AIM: The aim of our study is to demonstrate the feasibility and potential benefits of utilizing holographic display for fluorescence-guided surgery through a series of experiments involving 3D-printed phantoms and canine patients with head and neck cancer. APPROACH: We explore the integration of a bioinspired camera with a mixed reality headset to project fluorescent images as holograms onto a see-through display, and we demonstrate the potential benefits of this technology through benchtop and RESULTS: Our complete imaging and holographic display system showcased improved delineation of fluorescent targets in phantoms compared with the 2D monitor display approach and easy integration into the veterinarian surgical workflow. CONCLUSIONS: Based on our findings, it is evident that our comprehensive approach, which combines a bioinspired multispectral imaging sensor with holographic goggles, holds promise in enhancing the presentation of fluorescent information to surgeons during intraoperative scenarios while minimizing disruptions

    Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping

    Get PDF
    The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging

    Evaluation of calibration methods for visible-spectrum division-of-focal-plane polarimeters

    No full text
    Polarization imaging sensors using the division-of-focal-plane paradigm have recently emerged on the market. These sensors, due to their compact design, are ideal for field work. One of the major drawbacks in these sensors is the spatial variation of the optical response of individual pixels across the imaging array. These spatial variations are due to variations in the nanowires of the pixelated polarization filters. In this paper, we describe and compare two methods for calibrating a division of focal plane sensors. We present theoretical and experimental data for these calibration methods
    corecore