1,096 research outputs found

    XMM-Newton Detection of Hot Gas in the Eskimo Nebula: Shocked Stellar Wind or Collimated Outflows?

    Full text link
    The Eskimo Nebula (NGC 2392) is a double-shell planetary nebula (PN) known for the exceptionally large expansion velocity of its inner shell, ~90 km/s, and the existence of a fast bipolar outflow with a line-of-sight expansion velocity approaching 200 km/s. We have obtained XMM-Newton observations of the Eskimo and detected diffuse X-ray emission within its inner shell. The X-ray spectra suggest thin plasma emission with a temperature of ~2x10^6 K and an X-ray luminosity of L_X = (2.6+/-1.0)x10^31 (d/1150 pc)^2 ergs/s, where d is the distance in parsecs. The diffuse X-ray emission shows noticeably different spatial distributions between the 0.2-0.65 keV and 0.65-2.0 keV bands. High-resolution X-ray images of the Eskimo are needed to determine whether its diffuse X-ray emission originates from shocked fast wind or bipolar outflows.Comment: 4 pages, 2 figures, accepted in Astronomy and Astrophysics Letter

    A Search for Jovian Planets around Hot White Dwarfs

    Get PDF
    Current searches for extrasolar planets have concentrated on observing the reflex Doppler shift of solar-type stars. Little is known, however, about planetary systems around non-solar-type stars. We suggest a new method to extend planetary searches to hot white dwarfs. Near a hot white dwarf, the atmosphere of a Jovian planet will be photoionized and emit hydrogen recombination lines, which may be detected by high- dispersion spectroscopic observations. Multi-epoch monitoring can be used to distinguish between non-LTE stellar emission and planetary emission, and to establish the orbital parameters of the detected planets. In the future, high-precision astrometric measurements of the hot white dwarf will allow the masses of the detected planets to be determined. Searches for Jovian planets around hot white dwarfs will provide invaluable new insight on the development of planetary systems around stars more massive than the Sun and on how stellar evolution affects these systems. We present high-dispersion spectroscopic observations of the white dwarf Feige 34 to demonstrate the complexity and feasibility of the search method.Comment: 10 pages, 2 figures, accepted for publication in the ApJ Letter
    • …
    corecore