10 research outputs found

    A comparative study of relative entropy of entanglement, concurrence and negativity

    Full text link
    The problem of ordering of two-qubit states imposed by relative entropy of entanglement (E) in comparison to concurrence (C) and negativity (N) is studied. Analytical examples of states consistently and inconsistently ordered by the entanglement measures are given. In particular, the states for which any of the three measures imposes order opposite to that given by the other two measures are described. Moreover, examples are given of pairs of the states, for which (i) N'=N'' and C'=C'' but E' is different from E'', (ii) N'=N'' and E'=E'' but C' differs from C'', (iii) E'=E'', N'C'', or (iv) states having the same E, C, and N but still violating the Bell-Clauser-Horne-Shimony-Holt inequality to different degrees.Comment: 8 pages, 7 figures, final versio

    Private quantum decoupling and secure disposal of information

    Full text link
    Given a bipartite system, correlations between its subsystems can be understood as information that each one carries about the other. In order to give a model-independent description of secure information disposal, we propose the paradigm of private quantum decoupling, corresponding to locally reducing correlations in a given bipartite quantum state without transferring them to the environment. In this framework, the concept of private local randomness naturally arises as a resource, and total correlations get divided into eliminable and ineliminable ones. We prove upper and lower bounds on the amount of ineliminable correlations present in an arbitrary bipartite state, and show that, in tripartite pure states, ineliminable correlations satisfy a monogamy constraint, making apparent their quantum nature. A relation with entanglement theory is provided by showing that ineliminable correlations constitute an entanglement parameter. In the limit of infinitely many copies of the initial state provided, we compute the regularized ineliminable correlations to be measured by the coherent information, which is thus equipped with a new operational interpretation. In particular, our results imply that two subsystems can be privately decoupled if their joint state is separable.Comment: Child of 0807.3594 v2: minor changes v3: presentation improved, one figure added v4: extended version with a lot of discussions and examples v5: published versio
    corecore