263 research outputs found

    Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    Get PDF
    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of “self-tagged” empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines

    HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage

    Get PDF
    Ischemic stroke is amongst the leading causes of death and disabilities. The available treatments are suitable for only a fraction of patients and thus novel therapies are urgently needed. Blockage of one of the cerebral arteries leads to massive and persisting inflammatory reaction contributing to the nearby neuronal damage. Targeting the detrimental pathways of neuroinflammation has been suggested to be beneficial in conditions of ischemic stroke. Nuclear receptor 4A-family (NR4A) member Nurr1 has been shown to be a potent modulator of harmful inflammatory reactions, yet the role of Nurr1 in cerebral stroke remains unknown. Here we show for the first time that an agonist for the dimeric transcription factor Nurr1/retinoid X receptor (RXR), HX600, reduces microglia expressed proinflammatory mediators and prevents inflammation induced neuronal death in in vitro co-culture model of neurons and microglia. Importantly, HX600 was protective in a mouse model of permanent middle cerebral artery occlusion and alleviated the stroke induced motor deficits. Along with the anti-inflammatory capacity of HX600 in vitro, treatment of ischemic mice with HX600 reduced ischemia induced Iba-1, p38 and TREM2 immunoreactivities, protected endogenous microglia from ischemia induced death and prevented leukocyte infiltration. These anti-inflammatory functions were associated with reduced levels of brain lysophosphatidylcholines (lysoPCs) and acylcarnitines, metabolites related to proinflammatory events. These data demonstrate that HX600 driven Nurr1 activation is beneficial in ischemic stroke and propose that targeting Nurr1 is a novel candidate for conditions involving neuroinflammatory component.Peer reviewe

    Venezuelan Equine Encephalitis Replicon Particles Can Induce Rapid Protection against Foot-and-Mouth Disease Virus

    Get PDF
    We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFN- α) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Furthermore, mice pretreated with either 107 or 108 infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN- α. By 6 h after treatment several genes were upregulated, and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN- α and VRP-GFP, is directly involved in protection against FMDV

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    Cu-II(atsm) Attenuates Neuroinflammation

    Get PDF
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex Cu-II(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of Cu-II(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). Cu-II(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of Cu-II(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.Peer reviewe

    CuII(atsm) Attenuates Neuroinflammation

    Get PDF
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer’s disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation.Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro.Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes.Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions

    A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus

    Get PDF
    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection

    Factors Associated with HIV/AIDS Diagnostic Disclosure to HIV Infected Children Receiving HAART: A Multi-Center Study in Addis Ababa, Ethiopia

    Get PDF
    BACKGROUND: Diagnostic disclosure of HIV/AIDS to a child is becoming an increasingly common issue in clinical practice. Nevertheless, some parents and health care professionals are reluctant to inform children about their HIV infection status. The objective of this study was to identify the proportion of children who have knowledge of their serostatus and factors associated with disclosure in HIV-infected children receiving HAART in Addis Ababa, Ethiopia. METHODS: A cross-sectional study was conducted in five hospitals in Addis Ababa from February 18, 2008-April 28, 2008. The study populations were parents/caretakers and children living with HIV/AIDS who were receiving Highly Active Antiretroviral Therapy (HAART) in selected hospitals in Addis Ababa. Univariate and multivariate logistic regression analysis were carried out using SPSS 12.0.1 statistical software. RESULTS: A total of 390 children/caretaker pairs were included in the study. Two hundred forty three children (62.3%) were between 6-9 years of age. HIV/AIDS status was known by 68 (17.4%) children, 93 (29%) caretakers reported knowing the child's serostatus two years prior to our survey, 180 (46.2%) respondents said that the child should be told about his/her HIV/AIDS status when he/she is older than 14 years of age. Children less than 9 years of age and those living with educated caregivers are less likely to know their results than their counterparts. Children referred from hospital's in-patient ward before attending the HIV clinic and private clinic were more likely to know their results than those from community clinic. CONCLUSION: The proportion of disclosure of HIV/AIDS diagnosis to HIV-infected children is low. Strengthening referral linkage and health education tailored to educated caregivers are recommended to increase the rate of disclosure
    • …
    corecore