4 research outputs found

    Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System

    Full text link
    Emulating spiking neural networks on analog neuromorphic hardware offers several advantages over simulating them on conventional computers, particularly in terms of speed and energy consumption. However, this usually comes at the cost of reduced control over the dynamics of the emulated networks. In this paper, we demonstrate how iterative training of a hardware-emulated network can compensate for anomalies induced by the analog substrate. We first convert a deep neural network trained in software to a spiking network on the BrainScaleS wafer-scale neuromorphic system, thereby enabling an acceleration factor of 10 000 compared to the biological time domain. This mapping is followed by the in-the-loop training, where in each training step, the network activity is first recorded in hardware and then used to compute the parameter updates in software via backpropagation. An essential finding is that the parameter updates do not have to be precise, but only need to approximately follow the correct gradient, which simplifies the computation of updates. Using this approach, after only several tens of iterations, the spiking network shows an accuracy close to the ideal software-emulated prototype. The presented techniques show that deep spiking networks emulated on analog neuromorphic devices can attain good computational performance despite the inherent variations of the analog substrate.Comment: 8 pages, 10 figures, submitted to IJCNN 201

    Robustness from structure: Inference with hierarchical spiking networks on analog neuromorphic hardware

    No full text
    How spiking networks are able to perform probabilistic inference is an intriguing question, not only for understanding information processing in the brain, but also for transferring these computational principles to neuromorphic silicon circuits. A number of computationally powerful spiking network models have been proposed, but most of them have only been tested, under ideal conditions, in software simulations. Any implementation in an analog, physical system, be it in vivo or in silico, will generally lead to distorted dynamics due to the physical properties of the underlying substrate. In this paper, we discuss several such distortive effects that are difficult or impossible to remove by classical calibration routines or parameter training. We then argue that hierarchical networks of leaky integrate-and-fire neurons can offer the required robustness for physical implementation and demonstrate this with both software simulations and emulation on an accelerated analog neuromorphic device.Comment: accepted at IJCNN 201
    corecore