916 research outputs found
The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years Of Data
In this catalog we present the updated set of spectral analyses of GRBs
detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first four years
of operation. It contains two types of spectra, time-integrated spectral fits
and spectral fits at the brightest time bin, from 943 triggered GRBs. Four
different spectral models were fitted to the data, resulting in a compendium of
more than 7500 spectra. The analysis was performed similarly, but not
identically to Goldstein et al. 2012. All 487 GRBs from the first two years
have been re-fitted using the same methodology as that of the 456 GRBs in years
three and four. We describe, in detail, our procedure and criteria for the
analysis, and present the results in the form of parameter distributions both
for the observer-frame and rest-frame quantities. The data files containing the
complete results are available from the High-Energy Astrophysics Science
Archive Research Center (HEASARC).Comment: Accepted for publication in ApJ
Limits on the GeV Emission from Gamma-Ray Bursts
The Large Area Telescope (LAT) on board of the Fermi satellite detected
emission above 30 MeV only in a small fraction of the long gamma-ray bursts
(GRBs) detected by the Fermi Gamma-ray Burst Monitor (GBM) at 8 keV - 10 MeV.
Those bursts that were detected by the LAT were among the brightest GBM bursts.
We examine a sample of the most luminous GBM bursts with no LAT detection and
obtain upper limits on their high energy fluence. We find an average upper
limit of LAT/GBM fluence ratio of 0.13 for GeV fluence during and an
average upper limit ratio of 0.45 for GeV fluence during the first 600 seconds
after the trigger. These ratios strongly constrain various emission models and
in particular rule out SSC models for the prompt emission. In about a third of
both LAT detected and LAT non-detected bursts, we find that the extrapolation
of the MeV range Band spectrum to the GeV range is larger than the observed GeV
fluence (or its upper limit). While this excess is not highly significant for
any specific burst, the overall excess in a large fraction of the bursts
suggests a decline in the high energy spectral slope in at least some of these
bursts. Possibly an evidence for the long sought after pair creation limit.Comment: Accepted for publication in MNRA
Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation
BACKGROUND: The relationship between cell shape, proliferation, and extracellular matrix (ECM) production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D) culture. RESULTS: Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1) Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2) Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3) Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. CONCLUSIONS: The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior
Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor
Aims: In this paper we study the main spectral and temporal properties of
gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key
properties of GRBs in the rest-frame of the progenitor and test for possible
intra-parameter correlations to better understand the intrinsic nature of these
events. Methods: Our sample comprises 32 GRBs with measured redshift that were
observed by GBM until August 2010. 28 of them belong to the long-duration
population and 4 events were classified as short/hard bursts. For all of these
events we derive, where possible, the intrinsic peak energy in the spectrum (\eprest), the duration in the rest-frame, defined as the
time in which 90% of the burst fluence was observed (\tninetyrest) and the
isotropic equivalent bolometric energy (\eiso). Results: The distribution of
\eprest has mean and median values of 1.1 MeV and 750 keV, respectively. A
log-normal fit to the sample of long bursts peaks at ~800 keV. No high-\ep
population is found but the distribution is biased against low \ep values. We
find the lowest possible \ep that GBM can recover to be ~ 15 keV. The
\tninetyrest distribution of long GRBs peaks at ~10 s. The distribution of
\eiso has mean and median values of erg and erg, respectively. We confirm the tight correlation between \eprest
and \eiso (Amati relation) and the one between \eprest and the 1-s peak
luminosity () (Yonetoku relation). Additionally, we observe a parameter
reconstruction effect, i.e. the low-energy power law index gets softer
when \ep is located at the lower end of the detector energy range. Moreover, we
do not find any significant cosmic evolution of neither \eprest nor
\tninetyrest.Comment: accepted by A&
SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity
We have performed detailed temporal and time-integrated spectral analysis of
286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor
(GBM) in January 2009, resulting in the largest uniform sample of temporal and
spectral properties of SGR J1550-5418 bursts. We have used the combination of
broadband and high time-resolution data provided with GBM to perform
statistical studies for the source properties. We determine the durations,
emission times, duty cycles and rise times for all bursts, and find that they
are typical of SGR bursts. We explore various models in our spectral analysis,
and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band
are equally well described by optically thin thermal bremsstrahlung (OTTB), a
power law with an exponential cutoff (Comptonized model), and two black-body
functions (BB+BB). In the spectral fits with the Comptonized model we find a
mean power-law index of -0.92, close to the OTTB index of -1. We show that
there is an anti-correlation between the Comptonized Epeak and the burst
fluence and average flux. For the BB+BB fits we find that the fluences and
emission areas of the two blackbody functions are correlated. The
low-temperature BB has an emission area comparable to the neutron star surface
area, independent of the temperature, while the high-temperature blackbody has
a much smaller area and shows an anti-correlation between emission area and
temperature. We compare the properties of these bursts with bursts observed
from other SGR sources during extreme activations, and discuss the implications
of our results in the context of magnetar burst models.Comment: 13 pages, 10 figures, 2 tables; minor changes, ApJ in pres
Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model
We study the vicinal surface of the restricted solid-on-solid model coupled
with the Langmuir adsorbates which we regard as two-dimensional lattice gas
without lateral interaction. The effect of the vapor pressure of the adsorbates
in the environmental phase is taken into consideration through the chemical
potential. We calculate the surface free energy , the adsorption coverage
, the step tension , and the step stiffness by
the transfer matrix method combined with the density-matrix algorithm. Detailed
step-density-dependence of and is obtained. We draw the roughening
transition curve in the plane of the temperature and the chemical potential of
adsorbates. We find the multi-reentrant roughening transition accompanying the
inverse roughening phenomena. We also find quasi-reentrant behavior in the step
tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.
Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor
In the last four decades it has been observed that solar flares show
quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest,
i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still
unclear which mechanism creates such QPPs. In this paper, we analyze four
bright solar flares which show compelling signatures of quasi-periodic behavior
and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi
satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can
be a key instrument to understand the physical processes which drive solar
flares. We tested for periodicity in the time series of the solar flares
observed by GBM by applying a classical periodogram analysis. However, contrary
to previous authors, we did not detrend the raw light curve before creating the
power spectral density spectrum (PSD). To assess the significance of the
frequencies we made use of a method which is commonly applied for X-ray
binaries and Seyfert galaxies. This technique takes into account the underlying
continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha}
dependence and is typically labeled red-noise. We checked the reliability of
this technique by applying it to a solar flare which was observed by the Reuven
Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides
any potential periodicity from the Sun, a 4 s rotational period due to the
rotation of the spacecraft around its axis. While we do not find an intrinsic
solar quasi-periodic pulsation we do reproduce the instrumental periodicity.
Moreover, with the method adopted here, we do not detect significant QPPs in
the four bright solar flares observed by GBM. We stress that for the purpose of
such kind of analyses it is of uttermost importance to appropriately account
for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&
The open innovation research landscape: established perspectives and emerging themes across different levels of analysis
This paper provides an overview of the main perspectives and themes emerging in research on open innovation (OI). The paper is the result of a collaborative process among several OI scholars – having a common basis in the recurrent Professional Development Workshop on ‘Researching Open Innovation’ at the Annual Meeting of the Academy of Management. In this paper, we present opportunities for future research on OI, organised at different levels of analysis. We discuss some of the contingencies at these different levels, and argue that future research needs to study OI – originally an organisational-level phenomenon – across multiple levels of analysis. While our integrative framework allows comparing, contrasting and integrating various perspectives at different levels of analysis, further theorising will be needed to advance OI research. On this basis, we propose some new research categories as well as questions for future research – particularly those that span across research domains that have so far developed in isolation
Guidelines for minimal information on cellular senescence experimentation in vivo
\ua9 2024 The AuthorsCellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called “minimum information for cellular senescence experimentation in vivo” (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo
- …