3 research outputs found

    Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2_2

    Get PDF
    We present the structural characterization and low-temperature magnetism of the triangular-lattice delafossite NaYbO2_2. Synchrotron x-ray diffraction and neutron scattering exclude both structural disorder and crystal-electric-field randomness, whereas heat-capacity measurements and muon spectroscopy reveal the absence of magnetic order and persistent spin dynamics down to at least 70\,mK. Continuous magnetic excitations with the low-energy spectral weight accumulating at the KK-point of the Brillouin zone indicate the formation of a novel spin-liquid phase in a triangular antiferromagnet. This phase is gapless and shows a non-trivial evolution of the low-temperature specific heat. Our work demonstrates that NaYbO2_2 practically gives the most direct experimental access to the spin-liquid physics of triangular antiferromagnets.Comment: 6 pages, 4figure

    Role of alkaline metal in the rare-earth triangular antiferromagnet KYbO2_2

    Get PDF
    We report crystal structure and magnetic behavior of the triangular antiferromagnet KYbO2_2, the A-site substituted version of the quantum spin liquid candidate NaYbO2_2. The replacement of Na by K introduces an anisotropic tensile strain with 1.6% in-plane and 12.1% out-of-plane lattice expansion. Compared to NaYbO2_2, both Curie-Weiss temperature and saturation field are reduced by about 20% as the result of the increased Yb--O--Yb angles, whereas the gg-tensor of Yb3+^{3+} becomes isotropic with g=3.08(3)g=3.08(3). Field-dependent magnetization shows the plateau at 1/2 of the saturated value and suggests the formation of the up-up-up-down field-induced order in the triangular AYbO2_2 oxides (A = alkali metal), in contrast to the isostructural selenides that exhibit the 1/3 plateau and the up-up-down field-induced order
    corecore