3,825 research outputs found

    Weak Mott insulators on the triangular lattice: possibility of a gapless nematic quantum spin liquid

    Full text link
    We study the energetics of Gutzwiller projected BCS states of various symmetries for the triangular lattice antiferromagnet with a four particle ring exchange using variational Monte Carlo methods. In a range of parameters the energetically favored state is found to be a projected dx2−y2d_{x^2-y^2} paired state which breaks lattice rotational symmetry. We show that the properties of this nematic or orientationally ordered paired spin liquid state as a function of temperature and pressure can account for many of the experiments on organic materials. We also study the ring-exchange model with ferromagnetic Heisenberg exchange and find that amongst the studied ans\"atze, a projected f−f-wave state is the most favorable.Comment: Longer version, 7+ pages, 5 figure

    Scattering quantum random-walk search with errors

    Get PDF
    We analyze the realization of a quantum-walk search algorithm in a passive, linear optical network. The specific model enables us to consider the effect of realistic sources of noise and losses on the search efficiency. Photon loss uniform in all directions is shown to lead to the rescaling of search time. Deviation from directional uniformity leads to the enhancement of the search efficiency compared to uniform loss with the same average. In certain cases even increasing loss in some of the directions can improve search efficiency. We show that while we approach the classical limit of the general search algorithm by introducing random phase fluctuations, its utility for searching is lost. Using numerical methods, we found that for static phase errors the averaged search efficiency displays a damped oscillatory behaviour that asymptotically tends to a non-zero value.Comment: 10 pages, 10 figures. Two figures added for clarity, also made improvements to the tex

    Vortex Phase Diagram of weakly pinned YBa2_2Cu3_3O7−δ_{7-\delta} for H ∥\parallel c

    Full text link
    Vortex phase diagram in a weakly pinned crystal of YBCO for H ∥\parallel c is reviewed in the light of a recent elucidation of the process of `inverse melting' in a Bismuth cuprate system and the imaging of an interface between the ordered and the disordered regions across the peak effect in 2H-NbSe2_2. In the given YBCO crystal, a clear distinction can be made between the second magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The field region between the peak fields of the SMP (Hsmpm^m_{smp}) and the onset fields of the PE (Hpeon^{on}_{pe})is not only continuously connected to the Bragg glass phase at lower fields but it is also sandwiched between the higher temperature vortex liquid phase and the lower temperature vortex glass phase. Thus, an ordered vortex state between Hsmpm^m_{smp} and Hpeon^{on}_{pe} can get transformed to the (disordered) vortex liquid state on heating as well as to the (disordered) vortex glass state on cooling, a situation analogous to the thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M⊙20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Reframing commitment in authentic leadership: Untangling relationship–outcome processes

    Get PDF
    Affective organizational commitment is theorized and empirically tested as a key mediator between authentic leadership and desirable employee outcomes. The results of a two-wave survey of 830 business people in Australia support a serial mediation model of authentic leadership efficacy. Followers\u27 perceptions of authentic leadership behavior influence their personal identification and affect-based trust in the leader, which in turn are mediated by affective organizational commitment to positively influence their work engagement and job satisfaction. These findings reinforce previous work that positions personal identification and affect-based trust as the two primary mediating mechanisms of authentic leadership. This paper extends prior research by demonstrating the important role of followers\u27 affective bonds with their organization in the operation of authentic leadership, moving beyond the dyad in our understanding of follower outcomes

    Reframing commitment in authentic leadership: Untangling relationship–outcome processes

    Get PDF
    Affective organizational commitment is theorized and empirically tested as a key mediator between authentic leadership and desirable employee outcomes. The results of a two-wave survey of 830 business people in Australia support a serial mediation model of authentic leadership efficacy. Followers\u27 perceptions of authentic leadership behavior influence their personal identification and affect-based trust in the leader, which in turn are mediated by affective organizational commitment to positively influence their work engagement and job satisfaction. These findings reinforce previous work that positions personal identification and affect-based trust as the two primary mediating mechanisms of authentic leadership. This paper extends prior research by demonstrating the important role of followers\u27 affective bonds with their organization in the operation of authentic leadership, moving beyond the dyad in our understanding of follower outcomes

    New Samarium and Neodymium based admixed ferromagnets with near zero net magnetization and tunable exchange bias field

    Full text link
    Rare earth based intermetallics, SmScGe and NdScGe, are shown to exhibit near zero net magnetization with substitutions of 6 to 9 atomic percent of Nd and 25 atomic percent of Gd, respectively. The notion of magnetic compensation in them is also elucidated by the crossover of zero magnetization axis at low magnetic fields (less than 103 Oe) and field-induced reversal in the orientation of the magnetic moments of the dissimilar rare earth ions at higher magnetic fields. These magnetically ordered materials with no net magnetization and appreciable conduction electron polarization display an attribute of an exchange bias field, which can be tuned. The attractively high magnetic ordering temperatures of about 270 K, underscore the importance of these materials for potential applications in spintronics.Comment: 6 page text + 5 figure

    Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals

    Get PDF
    Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed matter realization implies that application of parallel electric (E\mathbf{E}) and magnetic (B\mathbf{B}) fields pumps electrons between nodes of opposite chirality at a rate proportional to Eâ‹…B\mathbf{E}\cdot\mathbf{B}. We argue that this pumping is measurable via nonlocal transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal, and therefore serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac semimetals --- recently reported to have been observed in experiments --- where a pair of Weyl nodes coexisting at a single point in the Brillouin zone are protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in semiconductors, this suggests that valley currents in three dimensional topological semimetals can be controlled using electric fields, which has potential practical `valleytronic' applications.Comment: 10 pages, 5 figures; substantial revisions include applications to Dirac semimetals and a treatment of impurity scattering and imbalance relaxation. Version accepted in Phys. Rev.
    • …
    corecore