2,287 research outputs found

    Adiabatic quantum computation and quantum phase transitions

    Full text link
    We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.Comment: 5 pages, 4 figures, accepted for publication in PR

    Comparison of Gravitational Wave Detector Network Sky Localization Approximations

    Full text link
    Gravitational waves emitted during compact binary coalescences are a promising source for gravitational-wave detector networks. The accuracy with which the location of the source on the sky can be inferred from gravitational wave data is a limiting factor for several potential scientific goals of gravitational-wave astronomy, including multi-messenger observations. Various methods have been used to estimate the ability of a proposed network to localize sources. Here we compare two techniques for predicting the uncertainty of sky localization -- timing triangulation and the Fisher information matrix approximations -- with Bayesian inference on the full, coherent data set. We find that timing triangulation alone tends to over-estimate the uncertainty in sky localization by a median factor of 44 for a set of signals from non-spinning compact object binaries ranging up to a total mass of 20M20 M_\odot, and the over-estimation increases with the mass of the system. We find that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. However, even after corrections, these techniques can yield significantly different results to the full analysis on specific mock signals. Thus, while the approximate techniques may be useful in providing rapid, large scale estimates of network localization capability, the fully coherent Bayesian analysis gives more robust results for individual signals, particularly in the presence of detector noise.Comment: 11 pages, 7 Figure

    Optimizing local protocols implementing nonlocal quantum gates

    Full text link
    We present a method of optimizing recently designed protocols for implementing an arbitrary nonlocal unitary gate acting on a bipartite system. These protocols use only local operations and classical communication with the assistance of entanglement, and are deterministic while also being "one-shot", in that they use only one copy of an entangled resource state. The optimization is in the sense of minimizing the amount of entanglement used, and it is often the case that less entanglement is needed than with an alternative protocol using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546

    Universality of Entanglement and Quantum Computation Complexity

    Full text link
    We study the universality of scaling of entanglement in Shor's factoring algorithm and in adiabatic quantum algorithms across a quantum phase transition for both the NP-complete Exact Cover problem as well as the Grover's problem. The analytic result for Shor's algorithm shows a linear scaling of the entropy in terms of the number of qubits, therefore difficulting the possibility of an efficient classical simulation protocol. A similar result is obtained numerically for the quantum adiabatic evolution Exact Cover algorithm, which also shows universality of the quantum phase transition the system evolves nearby. On the other hand, entanglement in Grover's adiabatic algorithm remains a bounded quantity even at the critical point. A classification of scaling of entanglement appears as a natural grading of the computational complexity of simulating quantum phase transitions.Comment: 30 pages, 17 figures, accepted for publication in PR

    Comparison of History Effects in Magnetization in Weakly pinned Crystals of high-TcT_c and low-Tc_c Superconductors

    Full text link
    A comparison of the history effects in weakly pinned single crystals of a high TcT_c YBa2_2Cu3_3O7δ_{7 - \delta} (for H \parallel c) and a low TcT_c Ca3_3Rh4_4Sn13_{13}, which show anomalous variations in critical current density Jc(H)J_c(H) are presented via tracings of the minor magnetization hysteresis loops using a vibrating sample magnetometer. The sample histories focussed are, (i) the field cooled (FC), (ii) the zero field cooled (ZFC) and (iii) an isothermal reversal of field from the normal state. An understanding of the results in terms of the modulation in the plastic deformation of the elastic vortex solid and supercooling across order-disorder transition is sought.Comment: Presented in IWCC-200

    Optimal estimation of group transformations using entanglement

    Full text link
    We derive the optimal input states and the optimal quantum measurements for estimating the unitary action of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entanglement. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function. We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for states of the optimal form all functions in such a class lead to the same optimal measurement. A first application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity of the optimal estimation is shown to be 1-3/(4N).Comment: 11 pages, no figure

    Implementation of quantum search algorithm using classical Fourier optics

    Get PDF
    We report on an experiment on Grover's quantum search algorithm showing that {\em classical waves} can search a NN-item database as efficiently as quantum mechanics can. The transverse beam profile of a short laser pulse is processed iteratively as the pulse bounces back and forth between two mirrors. We directly observe the sought item being found in N\sim\sqrt{N} iterations, in the form of a growing intensity peak on this profile. Although the lack of quantum entanglement limits the {\em size} of our database, our results show that entanglement is neither necessary for the algorithm itself, nor for its efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc

    Using entanglement improves precision of quantum measurements

    Full text link
    We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit, in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits and continuous variable

    Bell Inequalities with Auxiliary Communication

    Get PDF
    What is the communication cost of simulating the correlations produced by quantum theory? We generalize Bell inequalities to the setting of local realistic theories augmented by a fixed amount of classical communication. Suppose two parties choose one of M two-outcome measurements and exchange 1 bit of information. We present the complete set of inequalities for M = 2, and the complete set of inequalities for the joint correlation observable for M = 3. We find that correlations produced by quantum theory satisfy both of these sets of inequalities. One bit of communication is therefore sufficient to simulate quantum correlations in both of these scenarios.Comment: 5 page

    Maximally Minimal Preons in Four Dimensions

    Full text link
    Killing spinors of N=2, D=4 supergravity are examined using the spinorial geometry method, in which spinors are written as differential forms. By making use of methods developed in hep-th/0606049 to analyze preons in type IIB supergravity, we show that there are no simply connected solutions preserving exactly 3/4 of the supersymmetry.Comment: 18 pages. References added, comments added discussing the possibility of discrete quotients of AdS(4) preserving 3/4 supersymmetry
    corecore