5,324 research outputs found
Quantum computers can search arbitrarily large databases by a single query
This paper shows that a quantum mechanical algorithm that can query
information relating to multiple items of the database, can search a database
in a single query (a query is defined as any question to the database to which
the database has to return a (YES/NO) answer). A classical algorithm will be
limited to the information theoretic bound of at least O(log N) queries (which
it would achieve by using a binary search).Comment: Several enhancements to the original pape
Quantum computers can search rapidly by using almost any transformation
A quantum computer has a clear advantage over a classical computer for
exhaustive search. The quantum mechanical algorithm for exhaustive search was
originally derived by using subtle properties of a particular quantum
mechanical operation called the Walsh-Hadamard (W-H) transform. This paper
shows that this algorithm can be implemented by replacing the W-H transform by
almost any quantum mechanical operation. This leads to several new applications
where it improves the number of steps by a square-root. It also broadens the
scope for implementation since it demonstrates quantum mechanical algorithms
that can readily adapt to available technology.Comment: This paper is an adapted version of quant-ph/9711043. It has been
modified to make it more readable for physicists. 9 pages, postscrip
Recommended from our members
Using printer ink color to control the behavior of paper microfluidics.
Paper microfluidic devices (including lateral flow assays) offer an excellent combination of utility and low cost. Many paper microfluidic devices are fabricated using the Xerox ColorQube line of commercial wax-based color printers; the wax ink serves as a hydrophobic barrier to fluid flow. These printers are capable of depositing four different colors of ink, cyan (C), magenta (M), yellow (Y), and black (K), plus 11 combinations of these colors (CM, CY, CK, MY, MK, YK, CMY, CMK, CYK, MYK, and CMYK), although most researchers use only black ink to print paper microfluidic devices. Recently, as part of a project to develop a computer-aided design framework for use with paper microfluidics devices, we unexpectedly observed that different colors of wax ink behave differently in paper microfluidics. We found that among the single colors of ink, black ink actually had the most barrier failures, and magenta ink had the fewest barrier failures. In addition, some combinations of colors performed even better than magenta: the combinations CY, MK, YK, CMY, CYK and MYK had no barrier failures in our study. We also found that the printer delivers significantly different amounts of ink to the paper for the different color combinations, and in general, the color combinations that formed the strongest barriers to fluid flow were the ones that had the most ink delivered to the paper. This suggests that by simply weighing paper samples printed with all 15 combinations of colors, one can easily find the color combinations most likely to form a strong barrier for a given printer. Finally, to show that deliberate choices of ink colors can actually be used to create new functions in paper microfluidics, we designed and tested a new color-based "antifuse" structure that protects paper microfluidic devices from a typical operator error (addition of too much fluid to the device). Our results provide a set of color choice guidelines that designers can use to control the behavior of their paper microfluidics
Piracy, Privacy, and Security: Legal Issues of Computer Use in Schools
The proliferation of microcomputer software has exacerbated three problems: piracy of software. . .piracy of information. . . and security of data
AA/EEO and School District Pre-Employment Application Violations
Many application forms still in violation of non-discrimination standards. Revision is necessary
Energy and Efficiency of Adiabatic Quantum Search Algorithms
We present the results of a detailed analysis of a general, unstructured
adiabatic quantum search of a data base of items. In particular we examine
the effects on the computation time of adding energy to the system. We find
that by increasing the lowest eigenvalue of the time dependent Hamiltonian {\it
temporarily} to a maximum of , it is possible to do the
calculation in constant time. This leads us to derive the general theorem which
provides the adiabatic analogue of the bound of conventional quantum
searches. The result suggests that the action associated with the oracle term
in the time dependent Hamiltonian is a direct measure of the resources required
by the adiabatic quantum search.Comment: 6 pages, Revtex, 1 figure. Theorem modified, references and comments
added, sections introduced, typos corrected. Version to appear in J. Phys.
Performance of Equal Phase-Shift Search for One Iteration
Grover presented the phase-shift search by replacing the selective inversions
by selective phase shifts of . In this paper, we investigate the
phase-shift search with general equal phase shifts. We show that for small
uncertainties, the failure probability of the Phase- search is smaller
than the general phase-shift search and for large uncertainties, the success
probability of the large phase-shift search is larger than the Phase-
search. Therefore, the large phase-shift search is suitable for large-size of
databases.Comment: 10 pages, 4 figure
- …