35 research outputs found

    Ecological homogenization of oil Properties in the American Residential Macrosystem

    Get PDF
    The conversion of native ecosystems to residential ecosystems dominated by lawns has been a prevailing land-use change in the United States over the past 70 years. Similar development patterns and management of residential ecosystems cause many characteristics of residential ecosystems to be more similar to each other across broad continental gradients than that of former native ecosystems. For instance, similar lawn management by irrigation and fertilizer applications has the potential to influence soil carbon (C) and nitrogen (N) pools and processes. We evaluated the mean and variability of total soil C and N stocks, potential net N mineralization and nitrification, soil nitrite (NO2−)/nitrate (NO3−) and ammonium (NH4+) pools, microbial biomass C and N content, microbial respiration, bulk density, soil pH, and moisture content in residential lawns and native ecosystems in six metropolitan areas across a broad climatic gradient in the United States: Baltimore, MD (BAL); Boston, MA (BOS); Los Angeles, CA (LAX); Miami, FL (MIA); Minneapolis–St. Paul, MN (MSP); and Phoenix, AZ (PHX). We observed evidence of higher N cycling in lawn soils, including significant increases in soil NO2−/NO3−, microbial N pools, and potential net nitrification, and significant decreases in NH4+ pools. Self-reported yard fertilizer application in the previous year was linked with increased NO2−/ NO3− content and decreases in total soil N and C content. Self-reported irrigation in the previous year was associated with decreases in potential net mineralization and potential net nitrification and with increases in bulk density and pH. Residential topsoil had higher total soil C than native topsoil, and microbial biomass C was markedly higher in residential topsoil in the two driest cities (LAX and PHX). Coefficients of variation for most biogeochemical metrics were higher in native soils than in residential soils across all cities, suggesting that residential development homogenizes soil properties and processes at the continental scale

    Continental-scale homogenization of residential lawn plant communities

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320

    Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample

    Get PDF
    Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-Ancestry and African-Ancestry populations and identified substantial predictive power using European-derived models in a non-European target population.We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset

    Evolutionary remodelling of N-terminal domain loops fine-tunes SARS-CoV-2 spike

    Get PDF
    The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune-driven antigenic variation and ongoing adaptation to a new host

    The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods

    Get PDF
    Background: Genetic factors contribute to anorexia nervosa (AN); and the first genome-wide significant locus has been identified. We describe methods and procedures for the Anorexia Nervosa Genetics Initiative (ANGI), an international collaboration designed to rapidly recruit 13,000 individuals with AN and ancestrally matched controls. We present sample characteristics and the utility of an online eating disorder diagnostic questionnaire suitable for large-scale genetic and population research. Methods: ANGI recruited from the United States (US), Australia/New Zealand (ANZ), Sweden (SE), and Denmark (DK). Recruitment was via national registers (SE, DK); treatment centers (US, ANZ, SE, DK); and social and traditional media (US, ANZ, SE). All cases had a lifetime AN diagnosis based on DSM-IV or ICD-10 criteria (excluding amenorrhea). Recruited controls had no lifetime history of disordered eating behaviors. To assess the positive and negative predictive validity of the online eating disorder questionnaire (ED100K-v1), 109 women also completed the Structured Clinical Interview for DSM-IV (SCID), Module H. Results: Blood samples and clinical information were collected from 13,363 individuals with lifetime AN and from controls. Online diagnostic phenotyping was effective and efficient; the validity of the questionnaire was acceptable. Conclusions: Our multi-pronged recruitment approach was highly effective for rapid recruitment and can be used as a model for efforts by other groups. High online presence of individuals with AN rendered the Internet/social media a remarkably effective recruitment tool in some countries. ANGI has substantially augmented Psychiatric Genomics Consortium AN sample collection. ANGI is a registered clinical trial: clinicaltrials.govNCT01916538; https://clinicaltrials.gov/ct2/show/NCT01916538?cond=Anorexia+Nervosa&draw=1&rank=3

    How the nonhuman world influences homeowner yard management in the American residential macrosystem

    No full text
    Although the yard is a hybrid social and material landscape, much social science research emphasizes the socio-cultural factors and has mostly neglected the potentially important influence of plants, animals, and the nonliving material world on homeowners’ decision-making. Using interviews across six metropolitan areas in the United States, we investigated the ways residential yards’ nonhuman context is perceived to influence homeowners’ relationships with and planning for their yards. We found that nonhuman dynamics establish boundaries of yard-related decision-making, and that homeowners described their relations with the nonhuman context of the yard as cooperative, oppositional, and negotiable. We call for social science in urban spaces to be more explicitly informed by a consideration of nonhuman agency, and offer an ethical reflection of who or what is considered to have a right to cohabitate in homeowners’ yards

    Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale

    No full text
    Context As urban areas increase in extent globally, domestic yards play an increasingly important role as potential contributors to ecosystem services and well-being. These benefits largely depend on the plant species richness and composition of yards. Objectives We aim to determine the factors that drive plant species richness and phylogenetic composition of cultivated and spontaneous flora in urban yards at the continental scale, and how these potential drivers interact. Methods We analyzed plant species richness and phylogenetic composition of cultivated and spontaneous flora of 117 private yards from six major metropolitan areas in the US. Yard plant species richness and phylogenetic composition were expressed as a function of biophysical and socioeconomic variables and yard characteristics using linear mixed-effects models and spatially explicit structural equation modeling. Results Extreme temperatures largely determined yard species richness and phylogenetic composition at the continental scale. Precipitation positively predicted spontaneous richness but negatively predicted cultivated richness. Only the phylogenetic composition of the spontaneous flora was associated with precipitation. The effect of lower temperatures and precipitation on all yard diversity parameters was partly mediated by yard area. Among various socioeconomic variables, only education level showed a significant effect on cultivated phylogenetic composition. Conclusions Our results support the hypothesis that irrigation compensates for precipitation in driving cultivated yard plant diversity at the continental scale. Socioeconomic variables among middle and upper class families have no apparent influence on yard diversity. These findings inform the adaptation of US urban vegetation in cities in the face of global change

    Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability

    No full text
    Local regulations on residential landscapes (yards and gardens) can facilitate or constrain ecosystem services and disservices in cities. To our knowledge, no studies have undertaken a comprehensive look at how municipalities regulate residential landscapes to achieve particular goals and to control management practices. Across six U.S. cities, we analyzed 156 municipal ordinances to examine regional patterns in local landscape regulations and their implications for sustainability. Specifically, we conducted content analysis to capture regulations aimed at: 1) goals pertaining to conservation and environmental management, aesthetics and nuisance avoidance, and health and wellbeing, and 2) management actions including vegetation maintenance, water and waste management, food production, and chemical inputs. Our results reveal significant variation in local and regional regulations. While regulatory goals stress stormwater management and nuisance avoidance, relatively few municipalities explicitly regulate residential yards to maintain property values, mitigate heat, or avoid allergens. Meanwhile, biological conservation and water quality protection are common goals, yet regulations on yard management practices (e.g., non-native plants or chemical inputs) sometimes contradict these purposes. In addition, regulations emphasizing aesthetics and the maintenance of vegetation, mowing of grass and weeds, as well as the removal of dead wood, may inhibit wildlife-friendly yards. As a whole, landscaping ordinances largely ignore tradeoffs between interacting goals and outcomes, thereby limiting their potential to support landscape sustainability. Recommendations therefore include coordinated, multiobjective planning through partnerships among planners, developers, researchers, and non-government entities at multiple scales
    corecore