3 research outputs found

    Unravelling the functional dynamics between the human gut microbiome and intestinal inflammatory responses

    No full text

    Systematic comparison of transcriptomes of Caco-2 cells cultured under different cellular and physiological conditions

    No full text
    There is a need for standardized in vitro models emulating the functionalities of the human intestinal tract to study human intestinal health without the use of laboratory animals. The Caco-2 cell line is a well-accepted and highly characterized intestinal barrier model, which has been intensively used to study intestinal (drug) transport, host–microbe interactions and chemical or drug toxicity. This cell line has been cultured in different in vitro models, ranging from simple static to complex dynamic microfluidic models. We aimed to investigate the effect of these different in vitro experimental variables on gene expression. To this end, we systematically collected and extracted data from studies in which transcriptome analyses were performed on Caco-2 cells grown on permeable membranes. A collection of 13 studies comprising 100 samples revealed a weak association of experimental variables with overall as well as individual gene expression. This can be explained by the large heterogeneity in cell culture practice, or the lack of adequate reporting thereof, as suggested by our systematic analysis of experimental parameters not included in the main analysis. Given the rapidly increasing use of in vitro cell culture models, including more advanced (micro) fluidic models, our analysis reinforces the need for improved, standardized reporting protocols. Additionally, our systematic analysis serves as a template for future comparative studies on in vitro transcriptome and other experimental data

    Differential gene expression in iPSC-derived human intestinal epithelial cell layers following exposure to two concentrations of the Short Chain Fatty Acids butyrate, propionate and acetate

    No full text
    Intestinal epithelial cells and the intestinal microbiota are in a mutualistic relationship that is dependent on communication. This communication is multifaceted, but one aspect is communication through compounds produced by the microbiota such as the short-chain fatty acids (SCFAs) butyrate, propionate and acetate. Studying the effects of SCFAs and especially butyrate in intestinal epithelial cell lines like Caco-2 cells has been proven problematic. In contrast to the in vivo intestinal epithelium, Caco-2 cells do not use butyrate as an energy source, leading to a build-up of butyrate. Therefore, we used human induced pluripotent stem cell derived intestinal epithelial cells, grown as a cell layer, to study the effects of butyrate, propionate and acetate on whole genome gene expression in the cells. For this, cells were exposed to concentrations of 1 and 10 mM of the individual short-chain fatty acids for 24 hours. Unique gene expression profiles were observed for each of the SCFAs in a concentration-dependent manner. Evaluation on both an individual gene level and pathway level showed that butyrate induced the biggest effects followed by propionate and then acetate. Several known effects of SCFAs on intestinal cells were confirmed, such as effects on metabolism and immune responses. The changes in metabolic pathways in the intestinal epithelial cell layers in this study demonstrate that there is a switch in energy source from glucose to SCFAs, thus induced pluripotent stem cell derived intestinal epithelial cell are responding in a similar manner to SCFAs as in vivo intestinal tissues. Overall design: Induced pluripotent stem cell derived intestinal epithelial cells were exposed to butyric acid (NaB; 1 or 10mM), acetic acid (NaA 1 or 10 mM), propionic acid, (NaP 1 or 10 mM) or control treatment (water) for 24 hours, and subjected to gene expression profiling by RNA-sequencing
    corecore