4,394 research outputs found
Sensitivity to interaural time differences in the medial superior olive of a small mammal, the Mexican free-tailed bat
Neurons in the medial superior olive (MSO) are thought to encode interaural time differences (ITDs), the main binaural cues used for localizing low-frequency sounds in the horizontal plane. The underlying mechanism is supposed to rely on a coincidence of excitatory inputs from the two ears that are phase-locked to either the stimulus frequency or the stimulus envelope. Extracellular recordings from MSO neurons in several mammals conform with this theory. However, there are two aspects that remain puzzling. The first concerns the role of the MSO in small mammals that have relatively poor low-frequency hearing and whose heads generate only very small ITDs. The second puzzling aspect of the scenario concerns the role of the prominent binaural inhibitory inputs to MSO neurons. We examined these two unresolved issues by recording from MSO cells in the Mexican free-tailed bat. Using sinusoidally amplitude-modulated tones, we found that the ITD sensitivities of many MSO cells in the bat were remarkably similar to those reported for larger mammals. Our data also indicate an important role for inhibition in sharpening ITD sensitivity and increasing the dynamic range of ITD functions. A simple model of ITD coding based on the timing of multiple inputs is proposed. Additionally, our data suggest that ITD coding is a by-product of a neuronal circuit that processes the temporal structure of sounds. Because of the free-tailed bat's small head size, ITD coding is most likely not the major function of the MSO in this small mammal and probably other small mammals
Presence and localization of a 30-kDa basic fibroblast growth factor-like protein in rodent testes
We have used a recently characterized rabbit antiserum against basic fibroblast growth factor (bFGF), which recognizes various forms of bFGF, to examine the presence and localization of bFGF in the testes of adult rats and mice and the 5-day-old rat. In Western blots of testicular homogenates of adult rats and mice and immature rats, immunoreactive single bands at approximately 30 kDa were detected. Immunocytochemistry revealed specific staining restricted to the tubular compartment. In 5-day-old rat testes, prespermatogonia were immunoreactive. The cytoplasm of pachytene spermatocytes was heavily stained in the adult testes of both species. Staining of these cells became evident around stage IV/V, was prominent in stage VII through IX and declined about stage XII/XIII (rat) or X-XI (mouse). Staining was seen in type A spermatogonia and in elongating spermatids in their cytoplasmatic lobes and along their flagellae. Sertoli cells were unstained. We propose that the pluripotential growth factor bFGF could be involved in the regulation of germ cell proliferation and differentiation in the adult and immature testis
Spiking Neurons Learning Phase Delays
Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 μs. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay
Neural delays shape selectivity to interaural intensity differences in the lateral superior olive
Neurons in the lateral superior olive (LSO) respond selectively to interaural intensity differences (IIDs), one of the chief cues used to localize sounds in space. LSO cells are innervated in a characteristic pattern: they receive an excitatory input from the ipsilateral ear and an inhibitory input from the contralateral ear. Consistent with this pattern, LSO cells generally are excited by sounds that are more intense at the ipsilateral ear and inhibited by sounds that are more intense at the contralateral ear. Despite their relatively homogeneous pattern of innervation, IID selectivity varies substantially from cell to cell, such that selectivities are distributed over the range of IIDs that would be encountered in nature. For some time, researchers have speculated that the relative timing of the excitatory and inhibitory inputs to an LSO cell might shape IID selectivity. To test this hypothesis, we recorded from 50 LSO cells in the free-tailed bat while presenting stimuli that varied in interaural intensity and in interaural time of arrival. The results suggest that, for more than half of the cells, the latency of inhibition was several hundred microseconds longer than the latency of excitation. Increasing the intensity to the inhibitory ear shortened the latency of inhibition and brought the timing of the inputs from the two ears into register. Thus, a neural delay of the inhibition helped to define the IID selectivity of these cells, accounting for a significant part of the variation in selectivity among LSO cells
Yes, there is a medial nucleus of the trapezoid body in humans
The medial nucleus of the trapezoid body (MNTB) is a collection of brainstem neurons that function within the ascending auditory pathway. MNTB neurons are associated with a number of anatomical and physiological specializations which make these cells especially well-equipped to provide extremely fast and precise glycinergic inhibition to its target neurons in the superior olivary complex and ventral nucleus of the lateral lemniscus. The inhibitory influence of MNTB neurons plays essentials roles in the localization of sound sources and encoding temporal features of complex sounds. The morphology, afferent and efferent connections and physiological response properties of MNTB neurons have been well-characterized in a number of laboratory rodents and some carnivores. Furthermore, the MNTB has been positively identified in all mammals examined, ranging from opossum and mice to chimpanzees. From the early 1970s through 2009, a number of studies denied the existence of the MNTB in humans and consequentially, the existence of this nucleus in the human brain has been debated for nearly 50 years. The absence of the MNTB from the human brain would negate current principles of sound localization and would require a number of novel adaptations, entirely unique to humans. However, a number of recent studies of human post-mortem tissue have provided evidence supporting the existence of the MNTB in humans. It therefore seems timely to review the structure and function of the MNTB, critically review the literature which led to the denial of the human MNTB and then review recent investigations supporting the existence of the MNTB in the human brain
Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications
Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic
resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of
Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity
underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the
use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to
cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers
have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic,
and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity
across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power
and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited.
Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral
reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains
in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163
A Transfer Matrix for the Input Impedance of weakly tapered Cones as of Wind Instruments
A formula for the local acoustical admittance in a conical waveguide with
viscous and thermal losses given by Nederveen in \emph{Acoustical Aspects of
Woodwind Instruments} (1969) is rewritten as an impedance transmission matrix.
Based on a self-consistent approximation for the cone, it differs from other
one-dimensional transmission matrices used in musical acoustics, which
implicitly include the loss model of a cylinder. The resonance frequencies of
air columns calculated with this new transmission matrix are in better
agreement with more comprehensive models. Even for long cones with a slight
taper, there is no need to discretize along the axis.Comment: 7 pages, 2 figure
Selected tools to visualize membrane interactions
In the past decade, we developed various fluorescence-based methods for monitoring membrane fusion, membrane docking, distances between membranes, and membrane curvature. These tools were mainly developed using liposomes as model systems, which allows for the dissection of specific interactions mediated by, for example, fusion proteins. Here, we provide an overview of these methods, including two-photon fluorescence cross-correlation spectroscopy and intramembrane Förster energy transfer, with asymmetric labelling of inner and outer membrane leaflets and the calibrated use of transmembrane energy transfer to determine membrane distances below 10 nm. We discuss their application range and their limitations using examples from our work on protein-mediated vesicle docking and fusion
Smart Emission - Building a Spatial Data Infrastructure for an Environmental Citizen Sensor Network
Item does not contain fulltextSmart Emission is a citizen sensor network using low-cost sensors that enables citizens to gather data about environmental quality, like air quality, noise load, vibrations, light intensities and heat stress. This paper introduces the design and development of the data infrastructure for the Smart Emission initiative and discusses challenges for the future. The Spatial Data Infrastructure (SDI) is open and accessible on the Internet using open geospatial standards and (Web-) client applications. Smart Emission as a citizen sensor network offers several possibilities for heterogonous applications, from health determination to spatial planning purposes, environmental monitoring for sustainable traffic management, climate adaptation in cities and city planning.Geospatial Sensor Webs Conference 2016 (GSW 2016), 29 augustus 201
- …