27 research outputs found
Musculoskeletal diseases in Marfan syndrome:a nationwide registry study
BACKGROUND: Marfan syndrome is associated with abnormalities in the musculoskeletal system including scoliosis, pectus deformities, protrusio acetabuli, and foot deformities. Over a life span, many patients with Marfan syndrome will need treatment; however, the musculoskeletal morbidity over a life span is not well described. The aim of the present study was to assess the overall burden of musculoskeletal disease in patients with Marfan syndrome. MATERIALS AND METHODS: A registry-based, nationwide epidemiological study of patients with a Ghent II verified Marfan syndrome diagnosis from 1977 to 2014. Each patient was matched on age, and sex with up to 100 controls from the background population. RESULTS: We identified 407 patients with Marfan syndrome and 40,700 controls and compared their musculoskeletal diagnoses and surgical treatments using Cox proportional hazards ratio (HR). The risk of a registration of a musculoskeletal diagnosis in patients with Marfan syndrome was significantly increased compared to controls (HR: 1.94 (1.69–2.24). One out of six with Marfan syndrome was registered with scoliosis (HR: 36.7 (27.5–48.9). Scoliosis was more common in women with Marfan syndrome compared to men (HR: 4.30 (1.73–1.08)). One out of 11 were registered with a pectus deformity HR: 40.8 (28.1–59.3), and one out of six with a deformity of the foot. Primarily pes planus (HR: 26.0 (15.2–44.3). The proportion of patients with Marfan syndrome (94/407) that underwent musculoskeletal surgery was also significantly higher (HR: 1.76 (1.43–2.16)). The major areas of surgery were the spine, pectups correction, and surgery of the foot/ankle. Ten patients with Marfan syndrome had elective orthopedic surgery without being recognized and diagnosed with Marfan syndrome until later in life. None of these had scoliosis, pectus deformity or a foot deformity. Among patients with an aortic dissection, the age at dissection was 34.3 years in those with at least one major musculoskeletal abnormality. In patients without a major abnormality the age at dissection was 45.1 years (p < 0.01). CONCLUSIONS: The extent of musculoskeletal disease is quite significant in Marfan syndrome, and many will need corrective surgery during their life span. Surgeons should be aware of undiagnosed patients with Marfan syndrome when treating patients with a Marfan syndrome like-phenotype
Cardiac arrest due to lymphocytic colitis: a case report
<p>Abstract</p> <p>Introduction</p> <p>We present a case of cardiac arrest due to hypokalemia caused by lymphocytic colitis.</p> <p>Case presentation</p> <p>A 69-year-old Caucasian man presented four months prior to a cardiac arrest with watery diarrhea and was diagnosed with lymphocytic colitis. Our patient experienced a witnessed cardiac arrest at his general practitioner's surgery. Two physicians and the emergency medical services resuscitated our patient for one hour and four minutes before arriving at our university hospital. Our patient was defibrillated 16 times due to the recurrence of ventricular tachyarrhythmias. An arterial blood sample revealed a potassium level of 2.0 mmol/L (reference range: 3.5 to 4.6 mmol/L) and pH 6.86 (reference range: pH 7.37 to 7.45). As the potassium level was corrected, the propensity for ventricular tachyarrhythmias ceased. Our patient recovered from his cardiac arrest without any neurological deficit. Further tests and examinations revealed no other reason for the cardiac arrest.</p> <p>Conclusion</p> <p>Diarrhea can cause life-threatening situations due to the excretion of potassium, ultimately causing cardiac arrest due to hypokalemia. Physicians treating patients with severe diarrhea should consider monitoring their electrolyte levels.</p
The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera
We have observed the nearby S0 galaxy NGC 7457 with the Planetary Camera of the Hubble Space Telescope. Spatial structure is observable at the diffraction-limited resolution of the 2.4 m HST primary despite the effects of spherical aberration. The central distribution of starlight appears consistent with a y ~ -1.0 power law for r 3 x 10^4 L_☉ pc^(-3) (V band). This is now the second densest core known after M32. From the ground, NGC 7457 resembles any number of unresolved elliptical galaxies, which suggests that compact dense cores may be common. The images of NGC 7457 demonstrate that HST can still provide unique and astrophysically interesting information on the central structure of galaxies
Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope
This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera (WFPC) of the Hubble Space Telescope (HST). We have resolved the gravitational lens system PG 1115 + 080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2.
Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H_0=50, q_0=0.5)
Reduction of PG:1115+080 Images
The data are three exposures in PC6 through F785LP obtained on March 3, 1991. The exposure times are 120, 400, and 400 seconds. The data are reduced with the "standard" WFPC reduction scheme: A-to-D correction, DC bias subtraction, AC bias subtraction, dark current subtraction, preflash subtraction, and flat field normalization, using the best available calibration data. The exposures are combined into a weighted average normalized to 400 seconds exposure time, so one DN (data number) is about 17.25 electrons. At this step, cosmic rays are removed by intercomparison of the three images
Planetary Camera observations of the M87 stellar cusp
Analysis of V and I band HST Planetary Camera images of the giant elliptical galaxy M87 show that its central starlight distribution is consistent with the black hole M_• = 2.6 X 10^9 M_☉ cusp model proposed for M87 by Young et al. [ApJ, 221, 721 (1978)]. A combined approach of image deconvolution and modeling is used to investigate the starlight distribution into limiting radii of ≈0".04 (3 pc at 16 Mpc). The central structure of M87 can be described by three components: a power-law starlight profile
of the form µ(r)∝a:r^(-1/4) for r<3", a central nonthermal point source, and optical counterparts of the jet knots N1 and M identified by VLBI observations. M87 lacks a constant surface brightness core, and its central starlight luminosity density exceeds 10^3L_☉ pc^(-3) (I band) for r< 10 pc. The profile strongly resembles a stellar cusp associated with a massive black hole. A review of existing velocity dispersion observations suggests that the Young et al. black hole mass can be accommodated to the observations
with minor adjustments of dynamical models. The central luminosity spike itself remains unresolved at HST resolution, with r_c < 1 pc. The spike has optical spectral index ɑ= -0.46 ± 0.20 and is at least as blue if not bluer than the rest of the M87 jet. The total nonthermal flux in the inner 1" of M87 agrees well with the central radio flux and the radio-optical spectral index of the rest of the jet. It is also consistent with the spectral-line dilution seen by Dressler & Richstone [ApJ, 348, 120 ( 1990)]; we thus argue that the spike is completely nonthermal
Hubble Space Telescope WFPC2 Imaging of M16: Photoevaporation and Emerging Young Stellar Objects
We present Hubble Space Telescope WFPC2 images of elephant trunks in the H II region M16. There are three principle results of this study. First, the morphology and stratified ionization structure of the interface between the dense molecular material and the interior of the H II region is well understood in terms of photoionization of a photoevaporative flow. Photoionization models of an empirical density profile capture the essential features of the observations, including the extremely localized region of [S II] emission at the interface and the observed offset between emission peaks in lower and higher ionization lines. The details of this structure are found to be a sensitive function both of the density profile of the interface and of the shape of the ionizing continuum. Interpretation of the interaction of the photoevaporative flow with gas in the interior of the nebula supports the view that much of the emission from H II regions may arise in such flows. Photoionization of photoevaporative flows may provide a useful paradigm for interpreting a wide
range of observations of H II regions. Second, we report the discovery of a population of small cometary globules that are being uncovered as the main bodies of the elephant trunks are dispersed. Several lines of evidence connect these globules to ongoing star formation, including the association of a number of globules with stellar objects seen in IR images of M16 or in the continuum HST images themselves. We refer to these structures as evaporating gaseous globules, or "EGGs." These appear to be the same type of object as the nebular condensations seen previously in M42. The primary difference between the two cases is that in M16 we are seeing the objects from the side, while in M42 the objects are seen more nearly face-on against the backdrop of the ionized face of the molecular cloud. We find that the "evaporating globule" interpretation naturally accounts for the properties of objects in both nebulae, while avoiding serious difficulties with the competing "evaporating disk" model previously applied to the objects in M42. More generally, we find that disk-like structures are relatively rare in either nebula. Third, the data indicate that photoevaporation may have uncovered many EGGs while the stellar objects in them were still accreting
mass, thereby freezing the mass distribution of the protostars at an early stage in their evolution. We conclude that the masses of stars in the cluster environment in M16 are generally determined not by the
onset of stellar winds, as in more isolated regions of star formation, but rather by disruption of the star forming environment by the nearby O stars