3,571 research outputs found

    Analysis of marketing systems on traditional bananas and plantains in Peru

    Get PDF
    Poster presented at Tropentag 2011 - Development on the Margin. Bonn (Germany), 3-7 Oct 2011

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Get PDF
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively

    First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

    Full text link
    We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.Comment: 4 pages, 4 figure

    Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride (h-BN) is a tantalizing material for solid-state quantum engineering. Analogously to three-dimensional wide-bandgap semiconductors like diamond, h-BN hosts isolated defects exhibiting visible fluorescence, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications, however, is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. The emitters are bright and stable over timescales of several months in ambient conditions. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission, which offer several clues about their electronic and chemical structure. Analysis of the defects' spectra reveals similarities in vibronic coupling despite widely-varying fluorescence wavelengths, and a statistical analysis of their polarized emission patterns indicates a correlation between the optical dipole orientations of some defects and the primitive crystallographic axes of the single-crystal h-BN film. These measurements constrain possible defect models, and, moreover, suggest that several classes of emitters can exist simultaneously in free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations

    Speeding up simulations of relativistic systems using an optimal boosted frame

    Full text link
    It can be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it has been pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. We summarize the findings, the difficulties and their solutions, and show that the technique enables simulations important to several areas of accelerator physics that are otherwise problematic, including self-consistent modeling in three-dimensions of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July 2009, eConf C09072

    An Early Litter for the Opossum (Didelphis Marsupialis) in Ohio

    Get PDF
    Author Institution: Department of Zoology, The Ohio State UniversityA female opossum, Didelphis marsupialis, was found dead on the road in Columbus, Franklin County, Ohio, on 25 February 1973, with nine young tightly attached to her teats. The size of the young suggests that they were conceived the first week of January and that the female was reproductively active during the last part of December. Early breeding at this latitude (lat. 40° N) is very unusual and is compared with known breeding dates from other areas of temperate North America

    Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey

    Get PDF
    A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference

    Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors

    Full text link
    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond

    LHC Dynamic Aperture Including the Beam-Beam Force

    Get PDF
    The LHC dynamic aperture in collision is constrained mainly by the beam-beam encounters, and by the field errors in the low-beta triplet quadrupoles. The nominal field errors were used and have been corrected with a local corrector scheme at each IP. The correction algorithm is explained, and the resulting dynamic aperture is shown. In the calculations, the effect of the crossing angle geometry, the beta-function, the bunch intensity and the pacman bunches on the dynamic aperture are studied. It is, however, also necessary to study how the unavoidable long range beam-beam encounters influence the dynamic aperture
    • 

    corecore