15 research outputs found

    Demographic routes to variability and regulation in bird populations

    Get PDF
    There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment. Regulation towards an equilibrium population size occurs through density-dependent mortality. At small population sizes, population dynamics are primarily driven by environment-driven variation in recruitment, whereas close to the carrying capacity K, variation in population growth is more strongly influenced by density-dependent mortality of both juveniles and adults. Our results provide evidence for the hypothesis proposed by Lack that population fluctuations in birds arise from temporal variation in the difference between density-independent recruitment and density-dependent mortality during the non-breeding season

    Evidence for r- and K-selection in a wild bird population: a reciprocal link between ecology and evolution.

    No full text
    Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K. This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size

    Population growth in a wild bird is buffered against phenological mismatch

    No full text
    road-scale environmental changes are altering patterns of natural selection in the wild, but few empirical studies have quantified the demographic cost of sustained directional selection in response to these changes. We tested whether population growth in a wild bird is negatively affected by climate change–induced phenological mismatch, using almost four decades of individual-level life-history data from a great tit population. In this population, warmer springs have generated a mismatch between the annual breeding time and the seasonal food peak, intensifying directional selection for earlier laying dates. Interannual variation in population mismatch has not, however, affected population growth. We demonstrated a mechanism contributing to this uncoupling, whereby fitness losses associated with mismatch are counteracted by fitness gains due to relaxed competition. These findings imply that natural populations may be able to tolerate considerable maladaptation driven by shifting climatic conditions without undergoing immediate declines

    Density dependence in an age-structured population of great tits: identifying the critical age classes

    No full text
    Classical approaches for the analyses of density dependence assume that all the individuals in a population equally respond and equally contribute to density dependence. However, in age-structured populations, individuals of different ages may differ in their responses to changes in population size and how they contribute to density dependence affecting the growth rate of the whole population. Here, we apply the concept of critical age classes, i.e., a specific scalar function that describes how one or a combination of several age classes affect the demographic rates negatively, in order to examine how total density dependence acting on the population growth rate depends on the age-specific population sizes. In a 38-year dataset of an age-structured great tit (Parus major) population, we find that the age classes including the youngest breeding females were the critical age classes for density regulation. These age classes correspond to new breeders that attempt to take a territory and that have the strongest competitive effect on other breeding females. They strongly affected population growth rate and reduced recruitment and survival rates of all breeding females. We also show that depending on their age class, females may differently respond to varying density. In particular, the negative effect of the number of breeding females was stronger on recruitment rate of the youngest breeding females. These findings question the classical assumptions that all the individuals of a population can be treated as having an equal contribution to density regulation and that the effect of the number of individuals is age independent. Our results improve our understanding of density regulation in natural populations
    corecore