6,205 research outputs found

    CP Violation in D0−D0‾D^0-\overline{D^0}Mixing

    Full text link
    The existence of D0−D0‾D^0-\overline{D^0} mixing at a detectable level requires new physics, which effectively yields a Δc=2\Delta c = 2 superweak interaction. In general this interaction may involve significant CP violation. For small values of the mixing it may be much easier to detect the CP-violating part of the mixing than the CP-conserving part.Comment: 3 pages, latex, no figure

    Turbulent convection: comparing the moment equations to numerical simulations

    Get PDF
    The non-local hydrodynamic moment equations for compressible convection are compared to numerical simulations. Convective and radiative flux typically deviate less than 20% from the 3D simulations, while mean thermodynamic quantities are accurate to at least 2% for the cases we have investigated. The moment equations are solved in minutes rather than days on standard workstations. We conclude that this convection model has the potential to considerably improve the modelling of convection zones in stellar envelopes and cores, in particular of A and F stars.Comment: 10 pages (6 pages of text including figure captions + 4 figures), Latex 2e with AAS Latex 5.0 macros, accepted for publication in ApJ

    CP Violation in \tau ->\nu\pi K_S and D->\pi K_S: The Importance of K_S-K_L Interference

    Full text link
    The BB-factories have measured CP asymmetries in the τ→πKSν\tau\to\pi K_S\nu and D→KSπD\to K_S\pi modes. The KSK_S state is identified by its decay to two pions at a time that is close to the KSK_S lifetime. Within the Standard Model and many of its extensions, the asymmetries in these modes come from CP violation in K0−Kˉ0K^0-\bar{K}^0 mixing. We emphasize that the interference between the amplitudes of intermediate KSK_S and KLK_L is as important as the pure KSK_S amplitude. Consequently, the measured asymmetries depend on the times over which the relevant decay rates are integrated and on features of the experiment.Comment: 4 pages, 4 figure

    Towards granular hydrodynamics in two-dimensions

    Full text link
    We study steady-state properties of inelastic gases in two-dimensions in the presence of an energy source. We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady-state with asymmetric velocity distributions, and we discuss the conditions under which such situations occur.Comment: 8 pages, 9 figures, revtex, references added, also available from http://arnold.uchicago.edu/?ebn

    Locally Localized Gravity Models in Higher Dimensions

    Full text link
    We explore the possibility of generalizing the locally localized gravity model in five space-time dimensions to arbitrary higher dimensions. In a space-time with negative cosmological constant, there are essentially two kinds of higher-dimensional cousins which not only take an analytic form but also are free from the naked curvature singularity in a whole bulk space-time. One cousin is a trivial extension of five-dimensional model, while the other one is in essence in higher dimensions. One interesting observation is that in the latter model, only anti-de Sitter (AdSpAdS_p) brane is physically meaningful whereas de Sitter (dSpdS_p) and Minkowski (MpM_p) branes are dismissed. Moreover, for AdSpAdS_p brane in the latter model, we study the property of localization of various bulk fields on a single brane. In particular, it is shown that the presence of the brane cosmological constant enables bulk gauge field and massless fermions to confine to the brane only by a gravitational interaction. We find a novel relation between mass of brane gauge field and the brane cosmological constant.Comment: 20 pages, LaTex 2e, revised version (to appear in Phys. Rev. D

    A consistent picture for large penguins in D -> pi+ pi-, K+ K-

    Full text link
    A long-standing puzzle in charm physics is the large difference between the D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF collaborations reported a surprisingly large difference between the direct CP asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are naturally related in the Standard Model via s- and d-quark "penguin contractions". Their sum gives rise to Delta A_CP, while their difference contributes to the two branching ratios with opposite sign. Assuming nominal SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay rates yields large penguin contractions that naturally explain Delta A_CP. Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure

    From Stars to Super-planets: the Low-Mass IMF in the Young Cluster IC348

    Full text link
    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approx 0.7 Msun to 0.015 Msun. The mass function derived for the cluster in this interval, dN/dlogM \propto M^{0.5}, is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.Comment: 37 pages, 16 figs, 6 tables (Table 4 is a separate LaTeX file) Accepted for publication in Astrophysical Journal (Oct 1, 2000 issue

    Detection of synchronization from univariate data using wavelet transform

    Full text link
    A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained oscillator by external driving with varying frequency. The method is based on the analysis of difference between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes between the respiration and slow oscillations in blood pressure.Comment: 10 pages, 9 figure

    B→τμ(X)B\to\tau\mu (X) decays in SUSY models without R-parity

    Full text link
    Being strictly forbidden in the standard model, experimental detection of the lepton flavor violating decays B(Bˉ)→τ+μ−B(\bar B)\to\tau^+\mu^- and b(bˉ)→Xτ+μ−b(\bar b)\to X\tau^+\mu^- would constitute an unmistakable indication of new physics. We study these decays in supersymmetric models without R-parity and without lepton number. In order to derive order of magnitude predictions for the branching ratios, we assume a horizontal U(1) symmetry with horizontal charges chosen to explain the magnitude of fermion masses and quark mixing angles. We find that the branching ratios for decays with a τμ\tau\mu pair in the final state are not particularly suppressed with respect to the lepton flavor conserving channels. In general in these models {\rm B}[b\to\mu^+\mu^-(X)]\lsim {\rm B}[b(\bar b)\to\tau^+\mu^-(X)] \lsim {\rm B}[b\to\tau^+\tau^-(X)]. While in some cases the rates for final states τ+τ−\tau^+\tau^- can be up to one order of magnitude larger than the lepton flavor violating channel, due to better efficiencies for muon detection and to the absence of standard model contributions, decays into τμ\tau\mu final states appear to be better suited to reveal this kind of new physics.Comment: 15 pages, LaTeX, 3 ps-figures (uses epsfig.sty) Minor typos corrected, one normalization factor added to Eq. (3.11). To be published on Phys. Rev.
    • …
    corecore