721 research outputs found

    Wheeler's delayed-choice thought experiment: Experimental realization and theoretical analysis

    Full text link
    Wheeler has strikingly illustrated the wave-particle duality by the delayed-choice thought experiment, in which the configuration of a 2-path interferometer is chosen after a single-photon light-pulsed has entered it. We present a quantitative theoretical analysis of an experimental realization of Wheeler's proposal

    Experimental realization of Wheeler's delayed-choice GedankenExperiment

    Full text link
    The quantum "mystery which cannot go away" (in Feynman's words) of wave-particle duality is illustrated in a striking way by Wheeler's delayed-choice GedankenExperiment. In this experiment, the configuration of a two-path interferometer is chosen after a single-photon pulse has entered it : either the interferometer is \textit{closed} (\textit{i.e.} the two paths are recombined) and the interference is observed, or the interferometer remains \textit{open} and the path followed by the photon is measured. We report an almost ideal realization of that GedankenExperiment, where the light pulses are true single photons, allowing unambiguous which-way measurements, and the interferometer, which has two spatially separated paths, produces high visibility interference. The choice between measuring either the 'open' or 'closed' configuration is made by a quantum random number generator, and is space-like separated -- in the relativistic sense -- from the entering of the photon into the interferometer. Measurements in the closed configuration show interference with a visibility of 94%, while measurements in the open configuration allow us to determine the followed path with an error probability lower than 1%

    Continuous-Variable Quantum Key Distribution using Thermal States

    Full text link
    We consider the security of continuous-variable quantum key distribution using thermal (or noisy) Gaussian resource states. Specifically, we analyze this against collective Gaussian attacks using direct and reverse reconciliation where both protocols use either homodyne or heterodyne detection. We show that in the case of direct reconciliation with heterodyne detection, an improved robustness to channel noise is achieved when large amounts of preparation noise is added, as compared to the case when no preparation noise is added. We also consider the theoretical limit of infinite preparation noise and show a secure key can still be achieved in this limit provided the channel noise is less than the preparation noise. Finally, we consider the security of quantum key distribution at various electromagnetic wavelengths and derive an upper bound related to an entanglement-breaking eavesdropping attack and discuss the feasibility of microwave quantum key distribution.Comment: 12 pages, 11 figures. Updated from published version with some minor correction

    Continuous variable quantum cryptography using coherent states

    Get PDF
    We propose several methods for quantum key distribution (QKD) based upon the generation and transmission of random distributions of coherent or squeezed states, and we show that they are are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50 %, but they do not rely on "non-classical" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with gaussian statistics.Comment: 5 pages, 1 figure. In v2 minor rewriting for clarity, references adde

    Quantum Cryptography Approaching the Classical Limit

    Get PDF
    We consider the security of continuous-variable quantum cryptography as we approach the classical-limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10,000 times the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore, incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.Comment: Letter (4 pages) followed by appendix (4 pages). Updated from published version with some minor correction

    Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    Full text link
    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV^{-} defects, with respect to its neutral counterpart NV0^{0}, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV^{-} defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamondComment: 6 pages, 4 figure

    Experimental investigation of continuous variable quantum teleportation

    Get PDF
    We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity, F; and with signal transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+} V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06 +/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1 and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure

    Continuous-variable quantum teleportation of entanglement

    Full text link
    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal, in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one mode of the two-mode entangled coherent state.Comment: 5 pages, 1 figure, published versio

    Purity of Gaussian states: measurement schemes and time-evolution in noisy channels

    Get PDF
    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme is tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.Comment: 9 Pages, 6 Figures; minor errors correcte
    corecore