7,866 research outputs found
Noncommutative QFT and Renormalization
Field theories on deformed spaces suffer from the IR/UV mixing and
renormalization is generically spoiled. In work with R. Wulkenhaar, one of us
realized a way to cure this disease by adding one more marginal operator. We
review these ideas, show the application to models and use the heat
kernel expansion methods for a scalar field theory coupled to an external gauge
field on a -deformed space and derive noncommutative gauge field
actions.Comment: To appear in the proceedings of the Workshop "Noncommutative Geometry
in Field and String Theory", Corfu, 2005 (Greece
Renormalisation of \phi^4-theory on noncommutative R^2 in the matrix base
As a first application of our renormalisation group approach to non-local
matrix models [hep-th/0305066], we prove (super-)renormalisability of Euclidean
two-dimensional noncommutative \phi^4-theory. It is widely believed that this
model is renormalisable in momentum space arguing that there would be
logarithmic UV/IR-divergences only. Although momentum space Feynman graphs can
indeed be computed to any loop order, the logarithmic UV/IR-divergence appears
in the renormalised two-point function -- a hint that the renormalisation is
not completed. In particular, it is impossible to define the squared mass as
the value of the two-point function at vanishing momentum. In contrast, in our
matrix approach the renormalised N-point functions are bounded everywhere and
nevertheless rely on adjusting the mass only. We achieve this by introducing
into the cut-off model a translation-invariance breaking regulator which is
scaled to zero with the removal of the cut-off. The naive treatment without
regulator would not lead to a renormalised theory.Comment: 26 pages, 44 figures, LaTe
Geometry of the Grosse-Wulkenhaar Model
We define a two-dimensional noncommutative space as a limit of finite-matrix
spaces which have space-time dimension three. We show that on such space the
Grosse-Wulkenhaar (renormalizable) action has natural interpretation as the
action for the scalar field coupled to the curvature. We also discuss a natural
generalization to four dimensions.Comment: 16 pages, version accepted in JHE
Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers
In this paper, we present a black-box attack against API call based machine
learning malware classifiers, focusing on generating adversarial sequences
combining API calls and static features (e.g., printable strings) that will be
misclassified by the classifier without affecting the malware functionality. We
show that this attack is effective against many classifiers due to the
transferability principle between RNN variants, feed forward DNNs, and
traditional machine learning classifiers such as SVM. We also implement GADGET,
a software framework to convert any malware binary to a binary undetected by
malware classifiers, using the proposed attack, without access to the malware
source code.Comment: Accepted as a conference paper at RAID 201
Renormalization of Non-Commutative Phi^4_4 Field Theory in x Space
In this paper we provide a new proof that the Grosse-Wulkenhaar
non-commutative scalar Phi^4_4 theory is renormalizable to all orders in
perturbation theory, and extend it to more general models with covariant
derivatives. Our proof relies solely on a multiscale analysis in x space. We
think this proof is simpler and could be more adapted to the future study of
these theories (in particular at the non-perturbative or constructive level).Comment: 32 pages, v2: correction of lemmas 3.1 and 3.2 with no consequence on
the main resul
Boundary effect of a partition in a quantum well
The paper wishes to demonstrate that, in quantum systems with boundaries,
different boundary conditions can lead to remarkably different physical
behaviour. Our seemingly innocent setting is a one dimensional potential well
that is divided into two halves by a thin separating wall. The two half wells
are populated by the same type and number of particles and are kept at the same
temperature. The only difference is in the boundary condition imposed at the
two sides of the separating wall, which is the Dirichlet condition from the
left and the Neumann condition from the right. The resulting different energy
spectra cause a difference in the quantum statistically emerging pressure on
the two sides. The net force acting on the separating wall proves to be nonzero
at any temperature and, after a weak decrease in the low temperature domain, to
increase and diverge with a square-root-of-temperature asymptotics for high
temperatures. These observations hold for both bosonic and fermionic type
particles, but with quantitative differences. We work out several analytic
approximations to explain these differences and the various aspects of the
found unexpectedly complex picture.Comment: LaTeX (with iopart.cls, iopart10.clo and iopart12.clo), 28 pages, 17
figure
Noncommutative Induced Gauge Theories on Moyal Spaces
Noncommutative field theories on Moyal spaces can be conveniently handled
within a framework of noncommutative geometry. Several renormalisable matter
field theories that are now identified are briefly reviewed. The construction
of renormalisable gauge theories on these noncommutative Moyal spaces, which
remains so far a challenging problem, is then closely examined. The computation
in 4-D of the one-loop effective gauge theory generated from the integration
over a scalar field appearing in a renormalisable theory minimally coupled to
an external gauge potential is presented. The gauge invariant effective action
is found to involve, beyond the expected noncommutative version of the pure
Yang-Mills action, additional terms that may be interpreted as the gauge theory
counterpart of the harmonic term, which for the noncommutative -theory
on Moyal space ensures renormalisability. A class of possible candidates for
renormalisable gauge theory actions defined on Moyal space is presented and
discussed.Comment: 24 pages, 6 figures. Talk given at the "International Conference on
Noncommutative Geometry and Physics", April 2007, Orsay (France). References
updated. To appear in J. Phys. Conf. Se
Statistical analysis of the DNA sequence of human chromosome 22
We study statistical patterns in the DNA sequence of human chromosome 22, the first completely sequenced human chromosome. We find that (i) the 33.4 x 10(6) nucleotide long human chromosome exhibits long-range power-law correlations over more than four orders of magnitude, (ii) the entropies H-n of the frequency distribution of oligonucleotides of length n (n-mers) grow sublinearly with increasing n, indicating the presence of higher-order correlations for all of the studied lengths 1 less than or equal to n less than or equal to 10, and (iii) the generalized entropies H-n(q) of n-mers decrease monotonically with increasing q and the decay of H-n(q) with q becomes steeper with increasing n less than or equal to 10, indicating that the frequency distribution of oligonucleotides becomes increasingly nonuniform as the length n increases. We investigate to what degree known biological features may explain the observed statistical patterns. We find that (iv) the presence of interspersed repeats may cause the sublinear increase of H-n with n, and that (v) the presence of monomeric tandem repeats as well as the suppression of CG dinucleotides may cause the observed decay of H-n(q) with q
Non-renormalizability of noncommutative SU(2) gauge theory
We analyze the divergent part of the one-loop effective action for the
noncommutative SU(2) gauge theory coupled to the fermions in the fundamental
representation. We show that the divergencies in the 2-point and the 3-point
functions in the -linear order can be renormalized, while the
divergence in the 4-point fermionic function cannot.Comment: 15 pages, results presented at ESI 2d dilaton gravity worksho
- …