22,764 research outputs found
Spin and angular momentum in the nucleon
Using the covariant spectator theory (CST), we present the results of a
valence quark-diquark model calculation of the nucleon structure function f(x)
measured in unpolarized deep inelastic scattering (DIS), and the structure
functions g1(x) and g2(x) measured in DIS using polarized beams and targets.
Parameters of the wave functions are adjusted to fit all the data. The fit
fixes both the shape of the wave functions and the relative strength of each
component. Two solutions are found that fit f(x) and g1(x), but only one of
these gives a good description of g2(x). This fit requires the nucleon CST wave
functions contain a large D-wave component (about 35%) and a small P-wave
component (about 0.6%). The significance of these results is discussed.Comment: 27 pages; 13 figure
Fixed-axis polarization states: covariance and comparisons
Addressing the recent criticisms of Kvinikhidze and Miller, we prove that the
spectator wave functions and currents based on ``fixed-axis'' polarization
states (previously introduced by us) are Lorentz covariant, and find an
explicit connection between them and conventional direction-dependent
polarization states. The discussion shows explicitly how it is possible to
construct pure -wave models of the nucleon.Comment: Changed title and introductory material to match accepted pape
Covariant nucleon wave function with S, D, and P-state components
Expressions for the nucleon wave functions in the covariant spectator theory
(CST) are derived. The nucleon is described as a system with a off-mass-shell
constituent quark, free to interact with an external probe, and two spectator
constituent quarks on their mass shell. Integrating over the internal momentum
of the on-mass-shell quark pair allows us to derive an effective nucleon wave
function that can be written only in terms of the quark and diquark
(quark-pair) variables. The derived nucleon wave function includes
contributions from S, P and D-waves.Comment: 13 pages and 1 figur
Two-pion exchange and strong form-factors in covariant field theories
In this work improvements to the application of the Gross equation to nuclear
systems are tested. In particular we evaluate the two pion exchange diagrams,
including the crossed-box diagram, using models developed within the
spectator-on-mass-shell covariant formalism. We found that the form factors
used in these models induce spurious contributions that violate the unitary cut
requirement. We tested then some alternative form-factors in order to preserve
the unitarity condition. With this new choice, the difference between the exact
and the spectator-on-mass-shell amplitudes is of the order of the one boson
scalar exchange, supporting the idea that this difference may be parameterized
by this type of terms.Comment: RevTeX, 21 pages, 19 figures (PostScript
A pure S-wave covariant model for the nucleon
Using the manifestly covariant spectator theory, and modeling the nucleon as
a system of three constituent quarks with their own electromagnetic structure,
we show that all four nucleon electromagnetic form factors can be very well
described by a manifestly covariant nucleon wave function with zero orbital
angular momentum. Since the concept of wave function depends on the formalism,
the conclusions of light-cone theory requiring nonzero angular momentum
components are not inconsistent with our results. We also show that our model
gives a qualitatively correct description of deep inelastic scattering,
unifying the phenomenology at high and low momentum transfer. Finally we review
two different definitions of nuclear shape and show that the nucleon is
spherical in this model, regardless of how shape is defined.Comment: 20 pages and 10 figures; greatly expanded version with new fits and
discussion of DIS; similar to published versio
Quark-Antiquark Bound States in the Relativistic Spectator Formalism
The quark-antiquark bound states are discussed using the relativistic
spectator (Gross) equations. A relativistic covariant framework for analyzing
confined bound states is developed. The relativistic linear potential developed
in an earlier work is proven to give vanishing meson decay
amplitudes, as required by confinement. The regularization of the singularities
in the linear potential that are associated with nonzero energy transfers (i.e.
) is improved. Quark mass functions that build chiral
symmetry into the theory and explain the connection between the current quark
and constituent quark masses are introduced. The formalism is applied to the
description of pions and kaons with reasonable results.Comment: 31 pages, 16 figure
- …