1,065 research outputs found

    Geometry, Scaling and Universality in the Mass Distributions in Heavy Ion Collisions

    Full text link
    Various features of the mass yields in heavy ion collisions are studied. The mass yields are discussed in terms of iterative one dimensional discrete maps. These maps are shown to produce orbits for a monomer or for a nucleus which generate the mass yields and the distribution of cluster sizes. Simple Malthusian dynamics and non-linear Verhulst dynamics are used to illustrate the approach. Nuclear cobwebbing, attractors of the dynamics, and Lyapanov exponents are discussed for the mass distribution. The self-similar property of the Malthusian orbit offers a new variable for the study of scale invariance using power moments of the mass distribution. Correlation lengths, exponents and dimensions associated with scaling relations are developed. Fourier transforms of the mass distribution are used to obtain power spectra which are investigated for a 1/fβ1/f^{\beta} behavior.Comment: 29 pages in REVTEX, 9 figures (available from the authors), RU-92-0

    Statistical Models of Nuclear Fragmentation

    Full text link
    A method is presented that allows exact calculations of fragment multiplicity distributions for a canonical ensemble of non-interacting clusters. Fragmentation properties are shown to depend on only a few parameters. Fragments are shown to be copiously produced above the transition temperature. At this transition temperature, the calculated multiplicity distributions broaden and become strongly super-Poissonian. This behavior is compared to predictions from a percolation model. A corresponding microcanonical formalism is also presented.Comment: 12 pages, 5 figure

    The Four-Fermi Model in Three Dimensions at Non-Zero Density and Temperature

    Full text link
    The Four Fermi model with discrete chiral symmetry is studied in three dimensions at non-zero chemical potential and temperature using the Hybrid Monte Carlo algorithm. The number of fermion flavors is chosen large (Nf=12)(N_f=12) to compare with analytic results. A first order chiral symmetry restoring transition is found at zero temperature with a critical chemical potential μc\mu_c in good agreement with the large NfN_f calculations. The critical index ν\nu of the correlation length is measured in good agreement with analytic calculations. The two dimensional phase diagram (chemical potential vs. temperature) is mapped out quantitatively. Finite size effects on relatively small lattices and non-zero fermion mass effects are seen to smooth out the chiral transition dramatically.Comment: 21 pages, sorry, no figure

    On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales

    Full text link
    The hadronic decays of the tau lepton can be used to determine the effective charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range 0 < m_tau' < m_tau. This definition provides a fundamental definition of the QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass scales directly from first principles and without any renormalization-scheme dependence by looking at the experimental data from the OPAL Collaboration. The results are consistent with the freezing of the physical coupling at mass scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added references, some text added, no results nor figures change

    Evolution of Gluon Spin in the Nucleon

    Get PDF
    We examine the Q2Q^2 evolution of gluon polarization in polarized nucleons. As is well known, the evolution of αsΔG(Q2)\alpha_s \Delta G(Q^2) is negligible for typical momentum transfer variations found in experimental deep inelastic scattering. As αs\alpha_s increases, however, the leading nonzero term in the evolution equation for the singlet first moment reduces the magnitude of the gluon spin. At low Q2Q^2 the term αsΔG\alpha_s \Delta G can vanish, and ultimately become negative. Thus, low energy model calculations yielding negative ΔG\Delta G are not necessarily in conflict with experimental evidence for positive gluon polarization at high Q2Q^2.Comment: ReVTeX + psfig, 7 pages, 3 figures (postscript), accepted in Physics Letters B, ([email protected]

    Four dimensional "old minimal" N=2 supersymmetrization of R^4

    Get PDF
    We write in superspace the lagrangian containing the fourth power of the Weyl tensor in the "old minimal" d=4, N=2 supergravity, without local SO(2) symmetry. Using gauge completion, we analyze the lagrangian in components. We find out that the auxiliary fields which belong to the Weyl and compensating vector multiplets have derivative terms and therefore cannot be eliminated on-shell. Only the auxiliary fields which belong to the compensating nonlinear multiplet do not get derivatives and could still be eliminated; we check that this is possible in the leading terms of the lagrangian. We compare this result to the similar one of "old minimal" N=1 supergravity and we comment on possible generalizations to other versions of N=1,2 supergravity.Comment: 31 pages, no figures. Minor corrections. Details of the full calculation included as an appendix. Reference adde

    Measuring the Temperature of Hot Nuclear Fragments

    Full text link
    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source

    Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory

    Get PDF
    We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave functions, including average multiplicities and average momenta of constituents, structure functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data in the tables of v

    Negative specific heat in a thermodynamic model of multifragmentation

    Full text link
    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. In this model cvc_v is always positive but for finite nuclei cpc_p can be negative for some temperatures and pressures. Furthermore, negative values of cpc_p can be obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values for cpc_p can persist for systems as large as 200 paticles but this depends upon parameters used in the model calculation. As expected, negative specific heats are absent in the thermodynamic limit.Comment: Revtex, 13 pages including 6 figure
    • …
    corecore