32,197 research outputs found

    2D Yang-Mills Theory as a Matrix String Theory

    Get PDF
    Quantization of two-dimensional Yang-Mills theory on a torus in the gauge where the field strength is diagonal leads to twisted sectors that are completely analogous to the ones that originate long string states in Matrix String Theory. If these sectors are taken into account the partition function is different from the standard one found in the literature and the invariance of the theory under modular transformations of the torus appears to hold in a stronger sense. The twisted sectors are in one-to-one correspondence with the coverings of the torus without branch points, so they define by themselves a string theory. A possible duality between this string theory and the Gross-Taylor string is discussed, and the problems that one encounters in generalizing this approach to interacting strings are pointed out. This talk is based on a previous paper by the same authors, but it contains some new results and a better interpretation of the results already obtained.Comment: 11 pages, LaTeX, 2 figures included with epsf. Talk presented at the 2nd Conference on Quantum aspects of Gauge Theories, Supersymmetry and Unification, Corfu, Greece, 21-26 September 199

    More on Phase Structure of Nonlocal 2D Generalized Yang-Mills Theories (nlgYM2_2's)

    Get PDF
    We study the phase structure of nonlocal two dimensional generalized Yang - Mills theories (nlgYM2_2) and it is shown that all order of ϕ2k\phi^{2k} model of these theories has phase transition only on compact manifold with g=0g = 0(on sphere), and the order of phase transition is 3. Also it is shown that the ϕ2+2α3ϕ3\phi^2 + \frac{2\alpha}{3}\phi^3 model of nlgYM2_2 has third order phase transition on any compact manifold with 1<g<1+A^∣ηc∣1 < g < 1+ \frac{\hat{A}}{|\eta_c|}, and has no phase transition on sphere.Comment: 11 pages, no figure

    Novel schemes for measurement-based quantum computation

    Full text link
    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique further develops tools from many-body physics - based on finitely correlated or projected entangled pair states - to go beyond the cluster-state based one-way computer. We identify resource states that are radically different from the cluster state, in that they exhibit non-vanishing correlation functions, can partly be prepared using gates with non-maximal entangling power, or have very different local entanglement properties. In the computational models, the randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. Finally, we comment on the possibility of tailoring computational models to specific physical systems as, e.g. cold atoms in optical lattices.Comment: 5 pages RevTeX, 1 figure, many diagrams. Title changed, presentation improved, material adde

    Statistical aspects of carbon fiber risk assessment modeling

    Get PDF
    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible

    Supersonic quantum communication

    Full text link
    When locally exciting a quantum lattice model, the excitation will propagate through the lattice. The effect is responsible for a wealth of non-equilibrium phenomena, and has been exploited to transmit quantum information through spin chains. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are limited to a causal cone defined by a constant speed, up to exponentially small corrections. In this work we show that for translationally invariant bosonic models with nearest-neighbor interactions, this belief is incorrect: We prove that one can encounter excitations which accelerate under the natural dynamics of the lattice and allow for reliable transmission of information faster than any finite speed of sound. The effect is only limited by the model's range of validity (eventually by relativity). It also implies that in non-equilibrium dynamics of strongly correlated bosonic models far-away regions may become quickly entangled, suggesting that their simulation may be much harder than that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe

    The String Calculation of QCD Wilson Loops on Arbitrary Surfaces

    Full text link
    Compact string expressions are found for non-intersecting Wilson loops in SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a weighted sum over covers of the surface. All terms from the coupled chiral sectors of the 1/N expansion of the Wilson loop expectation values are included.Comment: 10 pages, LaTeX, no figure

    Fluctuating Multicomponent Lattice Boltzmann Model

    Get PDF
    Current implementations of fluctuating lattice Boltzmann equations (FLBE) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem (FDT) directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the ortho-normal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and non-ideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.Comment: 30 pages, 6 figure
    • …
    corecore