37,854 research outputs found

    The stability of the spectator, Dirac, and Salpeter equations for mesons

    Get PDF
    Mesons are made of quark-antiquark pairs held together by the strong force. The one channel spectator, Dirac, and Salpeter equations can each be used to model this pairing. We look at cases where the relativistic kernel of these equations corresponds to a time-like vector exchange, a scalar exchange, or a linear combination of the two. Since the model used in this paper describes mesons which cannot decay physically, the equations must describe stable states. We find that this requirement is not always satisfied, and give a complete discussion of the conditions under which the various equations give unphysical, unstable solutions

    Novel schemes for measurement-based quantum computation

    Full text link
    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique further develops tools from many-body physics - based on finitely correlated or projected entangled pair states - to go beyond the cluster-state based one-way computer. We identify resource states that are radically different from the cluster state, in that they exhibit non-vanishing correlation functions, can partly be prepared using gates with non-maximal entangling power, or have very different local entanglement properties. In the computational models, the randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. Finally, we comment on the possibility of tailoring computational models to specific physical systems as, e.g. cold atoms in optical lattices.Comment: 5 pages RevTeX, 1 figure, many diagrams. Title changed, presentation improved, material adde

    Two-pion exchange potential and the πN\pi N amplitude

    Get PDF
    We discuss the two-pion exchange potential which emerges from a box diagram with one nucleon (the spectator) restricted to its mass shell, and the other nucleon line replaced by a subtracted, covariant πN\pi N scattering amplitude which includes Δ\Delta, Roper, and D13D_{13} isobars, as well as contact terms and off-shell (non-pole) dressed nucleon terms. The πN\pi N amplitude satisfies chiral symmetry constraints and fits πN\pi N data below \sim 700 MeV pion energy. We find that this TPE potential can be well approximated by the exchange of an effective sigma and delta meson, with parameters close to the ones used in one-boson-exchange models that fit NNNN data below the pion production threshold.Comment: 9 pages (RevTex) and 7 postscript figures, in one uuencoded gzipped tar fil

    Covariant equations for the three-body bound state

    Get PDF
    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including the Wigner rotations and rho-spin decomposition of the off-shell particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative rho-spin states of the off-shell particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st

    Relativistic calculation of the triton binding energy and its implications

    Get PDF
    First results for the triton binding energy obtained from the relativistic spectator or Gross equation are reported. The Dirac structure of the nucleons is taken into account. Numerical results are presented for a family of realistic OBE models with off-shell scalar couplings. It is shown that these off-shell couplings improve both the fits to the two-body data and the predictions for the binding energy.Comment: 5 pages, RevTeX 3.0, 1 figure (uses epsfig.sty

    String Theoretical Interpretation for Finite N Yang-Mills Theory in Two-Dimensions

    Full text link
    We discuss the equivalence between a string theory and the two-dimensional Yang-Mills theory with SU(N) gauge group for finite N. We find a sector which can be interpreted as a sum of covering maps from closed string world-sheets to the target space, whose covering number is less than N. This gives an asymptotic expansion of 1/N whose large N limit becomes the chiral sector defined by D.Gross and W.Taylor. We also discuss that the residual part of the partition function provides the non-perturbative corrections to the perturbative expansion.Comment: 15 pages, no figures, LaTeX2e, typos corrected, final version to appear in Modern Physics Letters

    Aspects of Large N Gauge Theory Dynamics as Seen by String Theory

    Get PDF
    In this paper we explore some of the features of large N supersymmetric and nonsupersymmetric gauge theories using Maldacena's duality conjectures. We shall show that the resulting strong coupling behavior of the gauge theories is consistent with our qualitative expectations of these theories. Some of these consistency checks are highly nontrivial and give additional evidence for the validity of the proposed dualities.Comment: 31 pages, LaTeX, 11 eps figures, typos correcte

    The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    Full text link
    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.Comment: 23 pages, 2 figures, Accepted for publication in the Journal of Chemical Physic

    Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha

    Get PDF
    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94
    corecore