28,560 research outputs found

    Strings and Branes in Nonabelian Gauge Theory

    Get PDF
    It is an old speculation that SU(N) gauge theory can alternatively be formulated as a string theory. Recently this subject has been revived, in the wake of the discovery of D-branes. In particular, it has been argued that at least some conformally invariant cousins of the theory have such a string representation. This is a pedagogical introduction to these developments for non-string theorists. Some of the existing arguments are simplified.Comment: Reference adde

    Normalization of the covariant three-body bound state vertex function

    Full text link
    The normalization condition for the relativistic three nucleon Bethe-Salpeter and Gross bound state vertex functions is derived, for the first time, directly from the three body wave equations. It is also shown that the relativistic normalization condition for the two body Gross bound state vertex function is identical to the requirement that the bound state charge be conserved, proving that charge is automatically conserved by this equation.Comment: 24 pages, 9 figures, published version, minor typos correcte

    The Solar Test of the Equivalence Principle

    Get PDF
    The Earth, Mars, Sun, Jupiter system allows for a sensitive test of the strong equivalence principle (SEP) which is qualitatively different from that provided by Lunar Laser Ranging. Using analytic and numerical methods we demonstrate that Earth-Mars ranging can provide a useful estimate of the SEP parameter η\eta. Two estimates of the predicted accuracy are derived and quoted, one based on conventional covariance analysis, and another (called ``modified worst case'' analysis) which assumes that systematic errors dominate the experiment. If future Mars missions provide ranging measurements with an accuracy of σ\sigma meters, after ten years of ranging the expected accuracy for the SEP parameter η\eta will be of order (112)×104σ(1-12)\times 10^{-4}\sigma. These ranging measurements will also provide the most accurate determination of the mass of Jupiter, independent of the SEP effect test.Comment: 10 pages; LaTeX; three figures upon reques

    The String Calculation of QCD Wilson Loops on Arbitrary Surfaces

    Full text link
    Compact string expressions are found for non-intersecting Wilson loops in SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a weighted sum over covers of the surface. All terms from the coupled chiral sectors of the 1/N expansion of the Wilson loop expectation values are included.Comment: 10 pages, LaTeX, no figure

    Microcanonical mean-field thermodynamics of self-gravitating and rotating systems

    Full text link
    We derive the global phase diagram of a self-gravitating NN-body system enclosed in a finite three-dimensional spherical volume VV as a function of total energy and angular momentum, employing a microcanonical mean-field approach. At low angular momenta (i.e. for slowly rotating systems) the known collapse from a gas cloud to a single dense cluster is recovered. At high angular momenta, instead, rotational symmetry can be spontaneously broken and rotationally asymmetric structures (double clusters) appear.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Let

    String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter

    Get PDF
    We propose gauging matrix models of string theory to eliminate unwanted non-singlet states. To this end we perform a discretised light-cone quantisation of large N gauge theory in 1+1 dimensions, with scalar or fermionic matter fields transforming in the adjoint representation of SU(N). The entire spectrum consists of bosonic and fermionic closed-string excitations, which are free as N tends to infinity. We analyze the general features of such bound states as a function of the cut-off and the gauge coupling, obtaining good convergence for the case of adjoint fermions. We discuss possible extensions of the model and the search for new non-critical string theories.Comment: 20 pages (7 figures available from authors as postscipt files), PUPT-134

    The four-fermion interaction in D=2,3,4: a nonperturbative treatment

    Full text link
    A new nonperturbative approach is used to investigate the Gross-Neveu model of four fermion interaction in the space-time dimensions 2, 3 and 4, the number NN of inner degrees of freedom being a fixed integer. The spontaneous symmetry breaking is shown to exist in D=2,3D=2,3 and the running coupling constant is calculated. The four dimensional theory seems to be trivial.Comment: a minor correction: one more acknowledgement is added. Latex 2.09 file, 15 pages, no figures, accepted for publication to Int.J.Mod.Phys.
    corecore