896 research outputs found

    3. Launching the New Enterprise

    Get PDF
    As the academic year of 1945-46 approached, the intensity of activity in preparation for actually opening the school in the fall term became overwhelming. Incredible though it may seem, Ives and Day were able in a period of a few weeks to assemble the nucleus of a faculty, several of whom formed a continuing source of counsel and advice both during the school’s formative years and thereafter. Includes: The First Dean and the School’s Dedication; A Participant’s View of the Early Years; Ives Moves On; Several Views of Martin P. Catherwood; The Founders

    String-Inspired Higher-Curvature Terms and the Randall-Sundrum Scenario

    Get PDF
    We consider the O(a') string effective action, with Gauss-Bonnet curvature-squared and fourth-order dilaton-derivative terms, which is derived by a matching procedure with string amplitudes in five space-time dimensions. We show that a non-factorizable metric of the Randall-Sundrum (RS) type, with four-dimensional conformal factor Exp(-2 k|z|), can be a solution of the pertinent equations of motion. The parameter k is found proportional to the string coupling g_s and thus the solution appears to be non-perturbative. It is crucial that the Gauss-Bonnet combination has the right (positive in our conventions) sign, relative to the Einstein term, which is the case necessitated by compatibility with string (tree) amplitude computations. We study the general solution for the dilaton and metric functions, and thus construct the appropriate phase-space diagram in the solution space. In the case of an anti-de-Sitter bulk, we demonstrate that there exists a continuous interpolation between (part of) the RS solution at z=infinity and an (integrable) naked singularity at z=0. This implies the dynamical formation of domain walls (separated by an infinite distance), thus restricting the physical bulk space time to the positive z axis. Some brief comments on the possibility of fine-tuning the four-dimensional cosmological constant to zero are also presented.Comment: 28 pages Latex, three eps figures incorporated, minor change

    Thinking like a man? The cultures of science

    Get PDF
    Culture includes science and science includes culture, but conflicts between the two traditions persist, often seen as clashes between interpretation and knowledge. One way of highlighting this false polarity has been to explore the gendered symbolism of science. Feminism has contributed to science studies and the critical interrogation of knowledge, aware that practical knowledge and scientific understanding have never been synonymous. Persisting notions of an underlying unity to scientific endeavour have often impeded rather than fostered the useful application of knowledge. This has been particularly evident in the recent rise of molecular biology, with its delusory dream of the total conquest of disease. It is equally prominent in evolutionary psychology, with its renewed attempts to depict the fundamental basis of sex differences. Wars over science have continued to intensify over the last decade, even as our knowledge of the political, economic and ideological significance of science funding and research has become ever more apparent

    A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing.

    Get PDF
    Studies of haploidentical hematopoietic stem cell transplantation (HSCT) have identified threshold doses of T cells below which severe GVHD is usually absent. However, little is known regarding optimal T-cell dosing as it relates to engraftment, immune reconstitution, and relapse. To begin to address this question, we developed a 2-step myeloablative approach to haploidentical HSCT in which 27 patients conditioned with total body irradiation (TBI) were given a fixed dose of donor T cells (HSCT step 1), followed by cyclophosphamide (CY) for T-cell tolerization. A CD34-selected HSC product (HSCT step 2) was infused after CY. A dose of 2 × 10(8)/kg of T cells resulted in consistent engraftment, immune reconstitution, and acceptable rates of GVHD. Cumulative incidences of grade III-IV GVHD, nonrelapse mortality (NRM), and relapse-related mortality were 7.4%, 22.2%, and 29.6%, respectively. With a follow-up of 28-56 months, the 3-year probability of overall survival for the whole cohort is 48% and 75% in patients without disease at HSCT. In the context of CY tolerization, a high, fixed dose of haploidentical T cells was associated with encouraging outcomes, especially in good-risk patients, and can serve as the basis for further exploration and optimization of this 2-step approach. This study is registered at www.clinicaltrials.gov as NCT00429143

    Correlation energies of inhomogeneous many-electron systems

    Full text link
    We generalize the uniform-gas correlation energy formalism of Singwi, Tosi, Land and Sjolander to the case of an arbitrary inhomogeneous many-particle system. For jellium slabs of finite thickness with a self-consistent LDA groundstate Kohn-Sham potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo results. For a helium atom we also obtain a good correlation energy.Comment: 4 pages,1 figur

    Improved results for N=(2,2) super Yang-Mills theory using supersymmetric discrete light-cone quantization

    Full text link
    We consider the (1+1)-dimensional N=(2,2){\cal N}=(2,2) super Yang--Mills theory which is obtained by dimensionally reducing N=1{\cal N}=1 super Yang--Mills theory in four dimension to two dimensions. We do our calculations in the large-NcN_c approximation using Supersymmetric Discrete Light Cone Quantization. The objective is to calculate quantities that might be investigated by researchers using other numerical methods. We present a precision study of the low-mass spectrum and the stress-energy correlator . We find that the mass gap of this theory closes as the numerical resolution goes to infinity and that the correlator in the intermediate rr region behaves like r−4.75r^{-4.75}.Comment: 18 pages, 8 figure

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    On topological charge carried by nexuses and center vortices

    Full text link
    In this paper we further explore the question of topological charge in the center vortex-nexus picture of gauge theories. Generally, this charge is locally fractionalized in units of 1/N for gauge group SU(N), but globally quantized in integral units. We show explicitly that in d=4 global topological charge is a linkage number of the closed two-surface of a center vortex with a nexus world line, and relate this linkage to the Hopf fibration, with homotopy Π3(S3)≃Z\Pi_3(S^3)\simeq Z; this homotopy insures integrality of the global topological charge. We show that a standard nexus form used earlier, when linked to a center vortex, gives rise naturally to a homotopy Π2(S2)≃Z\Pi_2(S^2)\simeq Z, a homotopy usually associated with 't Hooft-Polyakov monopoles and similar objects which exist by virtue of the presence of an adjoint scalar field which gives rise to spontaneous symmetry breaking. We show that certain integrals related to monopole or topological charge in gauge theories with adjoint scalars also appear in the center vortex-nexus picture, but with a different physical interpretation. We find a new type of nexus which can carry topological charge by linking to vortices or carry d=3 Chern-Simons number without center vortices present; the Chern-Simons number is connected with twisting and writhing of field lines, as the author had suggested earlier. In general, no topological charge in d=4 arises from these specific static configurations, since the charge is the difference of two (equal) Chern-Simons number, but it can arise through dynamic reconnection processes. We complete earlier vortex-nexus work to show explicitly how to express globally-integral topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page
    • 

    corecore