1,092 research outputs found
New anomalous trajectory in Regge theory
We show that a new Regge trajectory with \alpha_{f_1} (0) \approx 1 and slope
\alpha_{f_1}'(0) \approx 0 explains the features of hadron-hadron scattering
and photoproduction of the rho and phi mesons at large energy and momentum
transfer. This trajectory with quantum numbers P = C = +1 and odd signature can
be considered as a natural partner of the Pomeron which has even signature. The
odd signature of the new exchange leads to contributions to the spin-dependent
cross sections, which do not vanish at large energy. The links between the
anomalous properties of this trajectory, the axial anomaly and the flavor
singlet axial vector f_1 (1285) meson are discussed.Comment: 20 pages, REVTeX, 8 figures (9 eps files), version to appear in Phys.
Rev.
Polarizing a stored proton beam by spin flip?
We discuss polarizing a proton beam in a storage ring, either by selective
removal or by spin flip of the stored ions. Prompted by recent, conflicting
calculations, we have carried out a measurement of the spin flip cross section
in low-energy electron-proton scattering. The experiment uses the cooling
electron beam at COSY as an electron target. The measured cross sections are
too small for making spin flip a viable tool in polarizing a stored beam. This
invalidates a recent proposal to use co-moving polarized positrons to polarize
a stored antiproton beam.Comment: 18 pages, 6 figure
The spin dependence of high energy proton scattering
Motivated by the need for an absolute polarimeter to determine the beam
polarization for the forthcoming RHIC spin program, we study the spin
dependence of the proton-proton elastic scattering amplitudes at high energy
and small momentum transfer.We examine experimental evidence for the existence
of an asymptotic part of the helicity-flip amplitude phi_5 which is not
negligible relative to the largely imaginary average non-flip amplitude phi_+.
We discuss theoretical estimates of r_5, essentially the ratio of phi_5 to
phi_+, based upon extrapolation of low and medium energy Regge phenomenological
results to high energies, models based on a hybrid of perturbative QCD and
non-relativistic quark models, and models based on eikonalization techniques.
We also apply the model-independent methods of analyticity and unitarity.The
preponderence of evidence at available energy indicates that r_5 is small,
probably less than 10%. The best available experimental limit comes from
Fermilab E704:those data indicate that |r_5|<15%. These bounds are important
because rigorous methods allow much larger values. In contradiction to a
widely-held prejudice that r_5 decreases with energy, general principles allow
it to grow as fast as ln(s) asymptotically, and some models show an even faster
growth in the RHIC range. One needs a more precise measurement of r_5 or to
bound it to be smaller than 5% in order to use the classical Coulomb-nuclear
interference technique for RHIC polarimetry. As part of this study, we
demonstrate the surprising result that proton-proton elastic scattering is
self-analysing, in the sense that all the helicity amplitudes can, in
principle, be determined experimentally at small momentum transfer without a
knowledge of the magnitude of the beam and target polarization
Recommended from our members
Measurements of the transverse-momentum-dependent cross sections of J /ψ production at mid-rapidity in proton+proton collisions at s =510 and 500 GeV with the STAR detector
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pTJ/ψ) using the μ+μ- and e+e- decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ- channel is for
Recommended from our members
Bulk properties of the system formed in Au+Au collisions at sNN =14.5 GeV at the BNL STAR detector
We report systematic measurements of bulk properties of the system created in Au+Au collisions at sNN=14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum spectra of π±, K±, and p(p) are studied at midrapidity (|y|<0.1) for nine centrality intervals. The centrality, transverse momentum (pT), and pseudorapidity (η) dependence of inclusive charged particle elliptic flow (v2), and rapidity-odd charged particles directed flow (v1) results near midrapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at sNN=2.76 TeV. The results at sNN=14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5-GeV energy fills the gap in μB, which is of the order of 100 MeV, between sNN=11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general
Recommended from our members
Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p+Au and d+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data
Recommended from our members
Measurement of inclusive J/ψ suppression in Au+Au collisions at sNN=200 GeV through the dimuon channel at STAR
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at sNN=200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT>5 GeV/c relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP
Recommended from our members
Observation of Excess J/ψ Yield at Very Low Transverse Momenta in Au+Au Collisions at sqrt[s_{NN}]=200 GeV and U+U Collisions at sqrt[s_{NN}]=193 GeV.
We report on the first measurements of J/ψ production at very low transverse momentum (p_{T}<0.2 GeV/c) in hadronic Au+Au collisions at sqrt[s_{NN}]=200 GeV and U+U collisions at sqrt[s_{NN}]=193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at midrapidity in Au+Au (U+U) collisions reaches about 24 (52) for p_{T}<0.05 GeV/c in the 60%-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low p_{T} range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semicentral collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low p_{T} originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon plasma
Recommended from our members
Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at s =510 GeV
We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, ALL, at midrapidity in polarized pp collisions at a center-of-mass energy s=510 GeV. The inclusive jet ALL measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of x≈0.015, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the x dependence of the gluon polarization. Both results are consistent with previous measurements made at s=200 GeV in the overlapping kinematic region, x>0.05, and show good agreement with predictions from recent next-to-leading order global analyses
- …