120 research outputs found

    Selecting a Small Set of Optimal Gestures from an Extensive Lexicon

    Full text link
    Finding the best set of gestures to use for a given computer recognition problem is an essential part of optimizing the recognition performance while being mindful to those who may articulate the gestures. An objective function, called the ellipsoidal distance ratio metric (EDRM), for determining the best gestures from a larger lexicon library is presented, along with a numerical method for incorporating subjective preferences. In particular, we demonstrate an efficient algorithm that chooses the best nn gestures from a lexicon of mm gestures where typically nâ‰Șmn \ll m using a weighting of both subjective and objective measures.Comment: 27 pages, 7 figure

    Fundamental Reflection Domains for Hyperbolic Tesselations

    Get PDF
    This paper summarizes Vinberg\u27s algorithm for finding the subgroup generated by reflections of the group of integral matrices that preserve particular quadratic forms of signature (n,1). Also, many fundamental reflection domains of different hyperboloids, found by the author using Vinberg\u27s algorithm, are listed in this paper. Plus, Matlab code, written by the author, is included, which serves to help one discover potential perpendicular vectors to the hyperplanes (mirrors) that enclose the fundamental domain.

    How to Research International Treaties and Agreements

    Get PDF

    Non‐Pulmonary Management of Newborns with Respiratory Distress

    Get PDF
    Due to the developmental immaturity of the lungs and other organs, the premature newborns are more prone to develop respiratory distress syndrome (RDS) and other problems of prematurity. The prevention of heat and water loses improves survival. Intolerance to excessive fluids and electrolytes in the transitional period may affect urine and sodium excretion together with maladaptation of cardiovascular system, the development of heart failure, and deterioration of RDS due to patent ductus arteriosus (PDA) and further development of bronchopulmonary dysplasia (BPD). Closure of PDA is frequently needed. The “trophic feeding” and intensive nutrition as soon as possible prevent weight loss and further growth restriction. Greater sensitivity to pain, short‐ and long‐term effects of inappropriately treated pain, use of opioids and sedatives are of concern in the short‐ and long‐term outcomes. Cardiovascular stability and adequate perfusion of the brain both affect the neurological outcome. Delayed cord clamping and erythropoietin help maintaining adequate levels of circulating hemoglobin which might affect later cognitive outcomes. In the following sections, detailed descriptions of non‐pulmonary management will be presented. We conducted electronic searches of articles on supportive (non‐pulmonary) management of newborns with RDS. Consensus guidelines on newborns with respiratory distress have been reviewed

    Simulation of Optical Fiber Amplifier Gain Using Equivalent Short Fibers

    Full text link
    Electromagnetic wave propagation in optical fiber amplifiers obeys Maxwell equations. Using coupled mode theory, the full Maxwell system within an optical fiber amplifier is reduced to a simpler model. The simpler model is made more efficient through a new scale model, referred to as an equivalent short fiber, which captures some of the essential characteristics of a longer fiber. The equivalent short fiber can be viewed as a fiber made using artificial (unphysical) material properties that in some sense compensates for its reduced length. The computations can be accelerated by a factor approximately equal to the ratio of the original length to the reduced length of the equivalent fiber. Computations using models of two commercially available fibers -- one doped with ytterbium, and the other with thulium -- show the practical utility of the concept. Extensive numerical studies are conducted to assess when the equivalent short fiber model is useful and when it is not

    Respiratory Care of the Neonate

    Get PDF
    The respiratory distress is a very common condition both in term and in preterm neonates and the most frequent reason for admission to the neonatal intensive care unit (NICU). The aetiology greatly depends on the maturation of neonate’s organs and perinatal events. The clinical picture is sometimes scarce and very nonspecific for the etiologic determination. Treatment of neonatal RD begins first with the application of a mixture of oxygen and air, then with different modes of non-invasive respiratory support methods. Non-invasive respiratory support can be sustained with nasal continuous positive airway pressure, bi-level positive airway pressure and high-flow nasal cannula ventilation. Non-invasive ventilation with high-frequency oscillations through nasal cannula or masks is also possible with some respiratory devices. Non-invasive ventilation is usually combined with the application of natural surfactant and other therapeutic means, like methylxanthine therapy, prevention and closure of patent ductus arteriosus, and control of infection. In the case of non-invasive ventilation failure, different kinds of invasive ventilation methods are available and being practiced in NICUs. The invasive respiratory support can be maintained by controlled or intermittent mandatory ventilation combined with different supportive synchronous positive inspiratory ventilation, offered by modern respirators

    Hemodynamic Monitoring in Neonates

    Get PDF
    Sick neonates are often hemodynamically unstable, hence their organs are inadequately supplied with oxygen. In order to maintain blood flow to vital organs, a number of compensatory mechanisms divert the blood flow away from the non‐vital organs. If hemodynamic changes are detected early, the cardiovascular compromise can be recognized in compensated phase and thereby the escalation to decompensated phase of low cardiac output syndrome might be prevented. In the treatment of hemodynamically unstable neonate venous filling, contractility of the heart muscle, blood pressure in the aorta, systemic blood flow, and regional distribution of blood flow should be evaluated. There are many evaluation and measurement methods based on different physical basis, each of them having their advantages and disadvantages. For most of them, it has not been demonstrated that they improve outcomes of sick neonates. Using these methods, useful hemodynamic data for the treatment of sick neonates can be obtained. Using new techniques will clarify the pathophysiology of cardiovascular failure in sick neonates, assess the effects of drugs on blood pressure and perfusion of the heart and other organs
    • 

    corecore