217 research outputs found
It Costs to Be Clean and Fit: Energetics of Comfort Behavior in Breeding-Fasting Penguins
), seabirds known to fast for up to one month during incubation shifts ashore.A time budget was estimated from focal and scan sampling field observations and the energy cost of comfort activities was calculated from the associated increase in heart rate (HR) during comfort episodes, using previously determined equations relating HR to energy expenditure. We show that incubating birds spent 22% of their daily time budget in comfort behavior (with no differences between day and night) mainly devoted to preening (73%) and head/body shaking (16%). During comfort behavior, energy expenditure averaged 1.24 times resting metabolic rate (RMR) and the corresponding energy cost (i.e., energy expended in excess to RMR) was 58 kJ/hr. Energy expenditure varied greatly among various types of comfort behavior, ranging from 1.03 (yawning) to 1.78 (stretching) times RMR. Comfort behavior contributed 8.8–9.3% to total daily energy expenditure and 69.4–73.5% to energy expended daily for activity. About half of this energy was expended caring for plumage.This study is the first to estimate the contribution of comfort behavior to overall energy budget in a free-living animal. It shows that although breeding on a tight energy budget, king penguins devote a substantial amount of time and energy to comfort behavior. Such findings underline the importance of comfort behavior for the fitness of colonial seabirds
Arabidopsis plants perform arithmetic division to prevent starvation at night
Photosynthetic starch reserves that accumulate in Arabidopsis leaves during
the day decrease approximately linearly with time at night to support
metabolism and growth. We find that the rate of decrease is adjusted to
accommodate variation in the time of onset of darkness and starch content, such
that reserves last almost precisely until dawn. Generation of these dynamics
therefore requires an arithmetic division computation between the starch
content and expected time to dawn. We introduce two novel chemical kinetic
models capable of implementing analog arithmetic division. Predictions from the
models are successfully tested in plants perturbed by a night-time light period
or by mutations in starch degradation pathways. Our experiments indicate which
components of the starch degradation apparatus may be important for appropriate
arithmetic division. Our results are potentially relevant for any biological
system dependent on a food reserve for survival over a predictable time period.Comment: To be published in eLIF
Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses
Wind is an important climatic factor for flying animals as by affecting their locomotion, it can deeply impact their life-history characteristics. In the context of globally changing wind patterns, we investigated the mechanisms underlying recently reported increase in body mass of a population of wandering albatrosses (Diomedea exulans) with increasing wind speed over time. We built a foraging model detailing the effects of wind on movement statistics and ultimately on mass gained by the forager and mass lost by the incubatingpartner. We then simulated the body mass of incubating pairs and their incubation success under varying wind scenarios. We tracked the frequency at which critical mass leading to nest abandonment was reached to assess incubation success. We found that wandering albatross behave as time-minimizers during incubation as mass gain was independent of any movement statistics but decreased with increasing mass at departure. Individuals forage until their energy requirements, which are determined by their body conditions, are fulfilled. This can come at the cost of their partner’s condition as mass loss of the incubating partner depended on trip duration. This behaviour is consistent with strategies of long-lived species which favoured their own survival over their current reproductive attempt. In addition, wind speed increased ground speed which in turn reduced trip duration and males foraged further away than females at high ground speed. Contrasted against an independent dataset, the simulation performed satisfactorily for males but less so for females under current wind conditions. The simulation predicted an increase in male body mass growth rate with increasing wind speed whereas females’ rate decreased. This trend may providean explanation for the observed increase in mass of males but not of females. Conversely, the simulation predicted very few nest abandonments, which is in line with the high breeding success of this species and is contrary to the hypothesis that wind patterns impact incubation success by altering foraging movement
Allometry of the Duration of Flight Feather Molt in Birds
Replacement of flight feathers takes disproportionately more time for large birds than it does for small birds, because feather length increases with body size almost twice as fast as feather growth rate increases
Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment
BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment
- …